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The nine-dimensional configuration space

The configuration space theory of (non-relativistic) three-body scattering is reviewed, with two main
objectives in mind: (i) to derive from a very different approach, wherein comparatively little use is made
of questionable mathematical manipulations (e.g. operator techniques or the representation of functions
by infinite integrals) the general expressions for reaction rates customarily deduced via momentum space
procedures; (ii) to determine the ‘physical’ three-particle transition operator T, to be distinguished
from the conventional T = V— VGV, where G is the Green function. The matrix elements (f|T?|i) yield
the reaction coefficient w(i —f) expressing the probability of ‘true’ three-body reactions; contained in
the matrix elements (f| T'|i) are terms representing, for example, purely two-body scattering events.
Although the possibility of inelastic processes is fully taken into account, for simplicity the detailed analysis
is limited to those transition amplitudes representing elastic scattering under the influence of short-range
forces; however, it is reasonable to suppose the results obtained are relevant to broader classes of
reactions and forces. In essence, the analysis concentrates on the d-functions occurring in transition
amplitudes, as well as in expressions for the solution W{*'(E) to Schrédinger’s equation presumably
satisfying the boundary conditions at real energy E for specified incident wave

Yy = exp {i(Ry. 11+ Ry 1o+ Ry 1)}

It is found that these d-functions—in a configuration space formulation—always are associated with
(and in effect signal) previous illegitimate mathematical operations, e.g. unjustified interchange of order
of integration and limit 7 - 0o, or improper computation of the limit ¢ - 0 in expressions for ¥;(E+ i¢).
This last assertion does not negate the fact that the é-functions so produced often are physically interpre-
table and indeed desirable, as, for example, the customary total momentum conserving §(K;— K,) factor in
laboratory system transition amplitudes. On the other hand, such d-functions, when on-shell (as can be,
for example, either the aforementioned §(K;—K;) or the d-functions associated with single—i.e. not
multiple two-body scattering events), yield meaninglessly infinite reaction rates unless reinterpreted in
terms of the (large) volume 7 within which the three particles 1, 2, 3 are reacting. Moreover, the
‘physical’ three-body amplitudes (f| T*|i) will contain no d-functions other than the ever-present
0(K;— K,). Thus, the presence of non-three-body contributions to {f| T'|i} is also signalled by anomalous

7-dependence of reaction rates inferred therefrom. In particular, the d-function contributions to (f| T'|i)
from two successive purely two-body scatterings, if retained, would result in predicted three-body
scattering rates proportional to 7%, whereas the true three-body rate should be proportional to 7.
A mathematically correct derivation of (f| T*|i), in which these double scattering -functions would be
wholly avoided, seems very difficult; however, it is possible to subtract these d-functions from the
divergent integral which—in the configuration space formalism—represents the contributions to
(f| T|i) associated with double scattering events. In this fashion it is concluded that {f]| T*|i} is the sum
of all contributions from n > 3 successive purely binary collisions, plus the off-shell contributions from
double scattering (n = 2) processes. The configuration space and momentum space results for
(f| T |i) agree, as do the configuration space and momentum space expressions for {f| T¢|i), provided it
is granted—as is not apparent from momentum space procedures—that (f| T*|i) should include the
off-shell double scattering contributions. Including these off-shell double scattering contributions keeps
finite the predicted three-body elastic scattering rate observed with fixed counters arranged so as to
exclude actual physical (on-shell) double scattering events, but makes infinite the total three-body
elastic scattering rate obtained from integration over all counter positions which exclude on-shell double
scattering as well as single scattering. Our analysis also relates the 7-dependence to the behaviour of W{+(E)
at large distances, and examines off-shell é-function contributions in certain (not all) formulas for
{f| T'|i), whose presence apparently is typically associated with the existence of bound states. In large

1 The text makes frequent reference to various sections of these appendices, which, because of their length,
have not been included in this paper, but have been placed in the Archives of the Society (for consultation).
Copies may be purchased from the National Lending Library, Boston Spa, Yorkshire, LS 23 7BQ , United Kingdom.
(Reference number SUP 10005.) Copies of the appendices may also be obtained from the author.
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part, the text is an amplification (often essentially a correction) of assertions concerning configuration
space three-body scattering theory which previously were inferred somewhat offhandedly from con-
clusions carefully derived for two-body reactions only. The Faddeev equations are mentioned, but the
problem with which these equations are mainly concerned—namely the reformulation of Schrédinger’s
equation as an integral equation permitting solution by Fredholm’s method—is not seriously considered
in the present work. Setting aside its purely formal implications for scattering theory, the considerations
of this publication will be most relevant and least dispensable in the theory of three-body reactions which
actually produce three outgoing products; such ‘three—three’ reactions of actual interest are not uncom-
mon in the field of chemistry. In a sense, therefore, this publication is a first step in the direction of
deducing correct formal expressions for important often measurable three~three chemical reaction rates.

1. INTRODUCTION AND SUMMARY

Consider the scattering of three particlesT & = 1, 2, 3 which for the purposes of this work may
be considered elementary, spinless and distinguishable. A major objective of the theory is to
determine the physical three-body reaction coeflicient

w(i—~>f) = w(ky—>ky) = W(ky, Ros, kg — Ry, oy, kyy), (1)
expressing the probability of three-body elastic scattering in the laboratory system, from initial
momenta %k, = m,v, to final momenta %k,. The reaction coefficient w is related to

observation by b (ki ky) = N, Ny Ny 7w (ky— k), (2)

where ® is the observed number of scatterings per unit time into wavenumber ranges dky,
dky, dky in a (large) volume 7 containing N, particles « per unit volume moving with the
precise velocities v,, & = 1, 2, 3. Presumably ®/7 should be independent of 7, i.e. presumably
in a correctly formulated theory the computed reaction coefficient & will be independent of 7.

If only by analogy with known results (Gerjuoy 1958a; Messiah 1962) for collisions between
two incident bodies, one expects that

w(ky— ky) = w(i—~f)

2 1 =
— 7“ s | T k) |20(Ey— Ey) 6(Ki — Ky) dkeyy dleyy d gy, (3)

where E and %K are respectively the total energy and momentum in the laboratory system, and

Ttk ki) = (1] Tt]iy = 9 T (4)

where

is the centre-of-mass system matrix element of the ‘physical’ three-particle transition operator T*
between initia] and final plane wave states ¢. Evidently determination of the form of T* would
fulfil the theoretical objective stated in the preceding paragraph. A determinative definition
of Tt is not immediately apparent, however. What is apparent is that (granting the validity
of (3)) the physical transition operator T*¢ must differ from the customarily employed ‘total’
transition operator (Watson & Nuttall 1967)

T(E) = V—VGW(E) V, (5)

where V is the total interaction and G is the total Green function, defined respectively via
(21b) and (27) below, and where it is useful to distinguish between the coordinate-dependent

t In this paragraph, and in subsequent paragraphs, the Greek letters , § are used as running subscripts over
the electron indices 1, 2, 3, while the letters i, f are employed to denote respectively initial and final states. Further-

more, barred and unbarred symbols regularly will denote corresponding quantities in the centré of mass and
laboratory systems respectively.

13-2



200 E. GERJUOY

function V" and its associated operator ¥ = V1 (see (27¢) below). Equation (5) is an unsuitable
expression for T? because the centre of mass system matrix elements

€ T [y = yf Ty (6)

contain d-functions (in addition to those already appearing in (3)); as detailed in §4, these
d-functions—if inserted into (3) and reinterpreted so as to keep finite the integral of (3) over all
final momenta—would lead to a @ depending on 7, i.e. to a result inconsistent with the presump-
tion that the number of three-body scattering events in 7 should be strictly proportional to 7 at
large volumes (in the limit 7 — o0).

Although the singularities of (6) in the complex energy plane recently have been very
thoroughly examined and classified for Yukawa interactions (Rubin, Sugar & Tiktopoulos
1966, 19674, b) and although the Faddeev (1961) reformulation of the Lippmann—Schwinger
equation (Lippmann & Schwinger 1950; Gell-Mann & Goldberger 1953) has focused attention
on the problem of subtracting out or otherwise eliminating (Weinberg 1964) the troublesome
d-functions contained in (6), the question I am raising—namely, what is the physical three-body
transition operator T¢?—does not appear to have been studied as such. Moreover, because the
matrix elements (4) or (6) are computed for plane wave states ¥, the aforementioned (Rubin ez al.
1966 ; Weinberg 1964; Watson & Nuttall 1967) studies of the singularities of (6) and their possible
subtractions typically have been performed in the momentum representation, which also
happens to be the most natural representation for utilization of diagrammatic methods; for
similar reasons, applications of the Faddeev equations (Faddeev 1961) for T generally (Lovelace
1964) have resorted to the momentum representation, even though those equations have a quite
representation-independent form. In addition, derivations of (3) in the literature (Lippmann &
Schwinger 1950; Gell-Mann & Goldberger 1953; Brenig & Haag 1963; Moller 1945) customarily
compute w in terms of transition probabilities found by projecting the wavefunction solving
Schrédinger’s equation onto final plane wave states, i.e. derivations of (3) customarily are
couched in the momentum representation essentially ab initio. Furthermore, although there is no
real basis for doubting the correctness of (3) as it stands, it is fair to state that the aforementioned
derivations do not distinguish between T and T*, and that these derivations characteristically
arrive at the result (3) only after considerable use of operator or other so-called symbolic manipu-
lations, whose mathematical validity is very difficult to assess.

On the other hand, previous investigations (Gerjuoy 19584) have shown that formulating
scattering theory in configuration space can be both useful and instructive. This assertion, taken
together with those stated in the previous paragraph, provides the motivation for the present
work, which in substance presents configuration space derivations of (3) and of a closed form
expression for T%, after first reviewing the relevant features of configuration space scattering
theory. In their totality, the configuration space results obtained furnish a welcome confirmation
of the general correctness of the customary momentum space procedures, which usually attain
their goals (e.g. a derivation of (3)) much more rapidly than do the configuration space pro-
cedures to be described. One very significant reason for the length of this work, however, is its
attempt to avoid symbolic manipulations as well as obviously mathematically unsatisfactory
operations, e.g. the representations of functions by divergent integrals; this attempt has been
largely successful, but unfortunately not entirely so. Moreover, I must point out that while
I largely have avoided obviously invalid operations and believe the claimed results of this work
are correct, the ‘proofs’ offered often are barely more than mathematically plausible arguments;
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certainly I do not intend to claim that such proofs are rigorous by mathematicians’ standards,
not even by the less stringent but still mathematically quite sophisticated standards of Rubin et al.
(1966, 19674, b). There are a few instances (see especially § 5) where the mathematics employed
seems sufficiently loose to possibly yield erroneous results; all such instances have been remarked
upon in the text, in so far as I have been able to recognize them. I add that of course there would
be no reason to doubt momentum space and configuration space predictions of physically
observable quantities will be the same, were it not for the fact that the configuration space and
momentum space formulations each involve some questionable mathematical manipulations
after starting from equally questionable by no means obviously identical physical assumptions.
The questionable features of configuration space scattering theory—at least for the elastic
collisions of three initially free particles—are a main subject of the present work; discussions,
more or less satisfactory, of the assumptions underlying the momentum space procedures for
computing reaction rates can be found in the literature (Gell-Mann & Goldberger 1953;
Goldberger & Watson 1964; Brenig & Haag 1963).

In the (time-independent) configuration space formulation of scattering theory, reaction
coefficients are computed from the probability current at infinity (Gerjuoy 19584). Thus, to
determine @ (i—f) defined in (1) and (2), it is necessary to determine the asymptotic behaviour
at large r = 1y, 1y, 15 of P{F)(r; E), defined as that particular solution of Schrédinger’s equation

(H-E)¥ =0, (7)

which at real (i.e. physical) energies E satisfies the boundary conditions presumably describing
the actual physical situation, namely the collision of three initially free particles moving with
momenta % k,;. To be useful, however, this definition must be supplemented by an unambiguous
mathematical specification of ¥{*). It is generally agreed—and has been argued from a variety
of physical standpoints (Lippmann & Schwinger 1950; Gell-Mann & Goldberger 1953)—that
the desired ¥{™)(E) solving (7) is obtainable from the Lippmann—Schwinger integral equation.
Specifically,} . . . .

pecicatyox PE(E) = lim Py (E +i€) = lim [yry(E) + O1(E+ie)], (82)

e—>0 €0

where, for € > 0, ¥i(E +ie) is the unique bounded (but not necessarily quadratically integrable)

solution to .

Yi(E+ie) = wi(E)-—meﬂTi(E-l—ie). (80)
Here the incident wave ¥ satisfies
(Hi—E) = (H-Vi—E)}1 =0 (9)
and, for complex A, the incident Green function
Gi(A) = 1/(Hi—A) (10a)
is the unique quadratically integrable solution of
(Hi—2A) Gy(A) =1, (100)

+ To be rigorous by mathematicians’ standards (see, for example, Faddeev 1965) requires very much more
elaborate analysis than I am able to or desire to give.

1 At energies E corresponding to bound states of the total Hamiltonian, or to thresholds of inelastic processes,
one should not expect the limit (8a) to exist. Similarly, G'P(E) defined by (274) need not exist at such exceptional
energies.
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Write YHNE) = i+ D), (11a)

where @{(E) is the ‘scattered part’ of ¥{*). The corresponding centre of mass system defining
equation for the scattered part ist _ _ L
PIH(E) = Y+ PP, (115)
where barred and unbarred quantities are related as in (33) and (55) below. Contained in
@), &) may be contributions from scattering processes which are not ‘truly three-body’ and
which therefore should not be included in estimates of the three-body coefficient w; for instance,
contributions from the purely two-body scattering of particle 1 by particle 2, wherein particle 3
plays norole (i.e. can be thought to be very far away from the relatively close pair 1, 2), obviously
should not be included in @ (i—f) of (2). For want of a better term I shall call such presently
unwanted contributions to @{*), &{*) ‘non-three-body’, even though (as amplified below) they
can arise from scattering processes which involve all three particles 1, 2, 3, e.g. the double
scattering process consisting of the purely two-body scattering of 1 by 2 followed by the similar
purely two-body scattering of 2 by 3. Apparently (see § 4) the existence of unwanted d-function
contributions to {f| T'|i) always can be associated with the presence of non-three-body contribu-
tions to @), @{+). The physical ‘truly three-body’ parts of ®{+), &{*) which remain after sub-
tracting away the non-three-body contributions will be denoted by @§+), G respectively. The
desired three-body elastic scattering w (i—f) then is found from the limit of @& as r,, r,, 1,
simultaneously approach infinity along such directions that every

Topg =T, —Ty=—1g, (12)
simultaneously becomes infinite.

The organization and contents of this work now can be intelligibly summarized] in rather
more detail than was possible in earlier paragraphs. In the first place, the present investigation
finds that as a quite general rule—in the configuration space formulation of scattering theory,
at any rate—the d-functions encountered (even when capable of perfectly sensible physical
interpretation) are associated with improper mathematical manipulations; correspondingly,
avoiding such manipulations results in a reformulation in which the associated §-functions do
not explicitly appear, although of course (if the aforementioned physical interpretation really
was correct) such reformulation does not eliminate the physical consequences of the §-functions.
For example, it has been shown previously (Gerjuoy 19584), and is redemonstrated in § 4, thatina
configurationspace formulation the well-known total momentum conserving § (K; — Kj) appearing
in the matrix elements (f| T |i) of the laboratory system transition operator T, equation (5), is
associated with computation of the outgoing probability current in the laboratory system using
@) defined by (11 a), ignoring the fact that @{*) has an incoming plane wave factor (cf. (555)
below). This ¢(K;—K;) factor in (f| T'|i), though obviously physically understandable and
desirable, causes the probability current flow involved in the laboratory system derivation of the
reaction coefficient to become infinite, necessitating (an also physically understandable) reinter-
pretation of (K — Kj) in terms of the volume 7, as discussed in § 4.2; on the other hand, because
&) of (11 ) does not possess the incoming plane wave factor present in @{*), the ¢ (K; — K}) factor
correspondingly is absent from the matrix elements (f| T |i), although of course total momentum
continues to be conserved and the true laboratory system three-body scattering rate @ remains
proportional to 7, as in (2). Similarly, §4 shows that the remaining annoying d-functions in

1 See footnote, p. 199.
1 A brief summary of this work, without any derivations, has appeared in the literature (Gerjuoy 1970).
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(f| T |i), (6), are associated with the fact that &™) still does not have the asymptotic behaviour
required for a mathematically correct computation of the outgoing three-body probability
current.

Further illustrations of the aforementioned thesis—that the §-functions which are encountered
are associated with improper mathematical manipulations—are deduced and discussed in
§§ 2 to 4 below. In particular, § 2 is concerned with the consequences of an unjustified inter-
change—in expressions such as (8 5)—of the order of integration and limit ¢ 0. Among other
results, § 2 shows that whenever stable (negative energy) two-particle bound states u;(r,,) exist,
then even in the centre of mass system the formal solutiont

P(E) = Ju(E) - GH(E) Vg (13)

to the Lippmann-Schwinger integral equation at real energies involves non-convergent oscil-
latory integrals—taking the form of J-functions vanishing (i.e. whose arguments are non-
vanishing) on the energy shell. Correspondingly, it can be seen that when such states u;(r,)
occur, the interchange of order of integration and limit ¢ - 0 required to derive (13) is unjustified;
moreover, in this instance reformulation so as to avoid unjustified interchange of order of
integration and limit € — 0 results in a formula for ¥{* in which no oscillatory integrals appear,
i.e. in this instance the -functions are non-physical consequences of the mathematically invalid
operations, even though (see § 2.2) the conditions for vanishing of these d-functions’ arguments
seem physically quite reasonable.

Section 3 examines the consequences—in integrals arising, for example, from the Lippmann~—
Schwinger integral equation for the total Green function G (r; r'; E) (Watson & Nuttall 1967)
—flowing from unjustified interchange of order of integration and limit as r or 7' — co. Taking
the limit of GV(r; r') as ' — oo provides an alternative (to (8)) means of specifying ¥{+), because
in this limit GY(r; r’) must become proportional to a solution of (7). In fact, this interchange—
of order of integration and limit #’— 00 in the Lippmann-Schwinger equation for G‘P—yields
precisely the laboratory system analogue of (13). According to § 2, when bound states exist this
analogue of (13) must be considered unsatisfactory (because it involves non-convergent integrals).
Correspondingly, among other results, § 3 shows that it is in just these circumstances, namely
when bound states can occur, that the interchange of order of integration and limit #' — o0 in
the Lippmann—Schwinger equation for G is unjustified.

As has been indicated, §4 is concerned with the consequences—in computing the outgoing
probability current—of unjustified assumptions about the asymptotic behaviour of, for example,
@{H)(r) at large r. Among other results, in addition to those already mentioned, § 4 shows that
even after subtraction of purely two-body single scattering contributions the residual part of @{*)
does not have the asymptotic behaviour required to represent truly three-body scattering.
Ignoring this fact leads to transition matrix elements (f| T |i), equation (6), containing
o-functions expressing the consequences of energy and momentum conservation in two successive
purely two-body elastic scattering events, i.e. in non-three-body double scattering processes of
the type mentioned illustratively following (114). Moreover, the necessary reinterpretation of
these double scattering d-functions, along the lines of the previously mentioned reinterpretation
of 8(K;— Kj), leads to three-body scattering rates @ from (2) proportional to 7%. This unpleasant
result implies (for reasons which have been explained) that the aforementioned double scattering

t Here GI(E) is the centre of mass analogue of the everywhere outgoing Green function G(E) appearing
in (5); for a more precise definition of this Green function, see (36) and (394).
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processes consisting of two successive purely two-body elastic scattering events really are ‘non-
three-body’, whose associated contributions must be subtracted from @{*) in order to obtain the
truly three-body scattered part @{+). The correctness of the foregoing reinterpretation of the
double scattering d-functions, and of the implications therefrom, is affirmed by additional essenti-
ally geometrical considerations in §4.2, which indicate that a three-body elastic scattering
rate © apparently proportional to 7¥ actually would be observed unless the experimental arrange-
ments (e.g. the locations of particle detectors) exclude counting double scattering events of the
aforementioned type. On the other hand, similar geometrical considerations indicate that the
contribution to the observed three-body ® from any number # > 3 of successive purely binary
collisions (Doolen 1968) between the three particles 1, 2, 3—unless negligibly infrequent—must
be proportional to 7, confirming the finding (still in §4) that such n > 3 rescattering processes
do not yield d-function contributions to (f| T |i).

The results of § 4 described above suggest that the physical (f| T*|i), yielding the truly three-
body @ and ® via (2) to (4), are obtainable by subtraction—from (f|T|i)—of the d-functions
which have been discussed. Of course, any derivation of (f| T*|i) involving the subtraction of
o-functions is immediately open to criticism because it perforce is employing improper mathe-
matical manipulations. Nevertheless, the final §5 details a derivation of T*(ky—> ks) via such
d-function subtraction, and examines the expression for (f| T*|i) thereby obtained, including
behaviour under time reversal. It is concluded that T¢ is the sum of all contributions from z > 3
successive purely binary collisions, plus the so-called off-shell contributions from n = 2 successive
binary collisions, i.e. plus the contributions from double scattering diagrams wherein energy is
not conserved in the individual two-body scattering events (although of course the initial and
final energies are equal after all scatterings have been completed). As discussed in the closing
§ 5.3 of the main text, the configuration space results for (f| T'|i) are wholly consistent with the
results for (f| T'|i) from momentum space procedures. However, momentum space procedures
do not seem to provide much basis for deciding what contributions (if any) from double scattering
diagrams belong in T*; once it has been decided that Tt should include the off-shell double
scattering contributions, the aforementioned agreement between momentum space and con-
figuration space results for (f| T |i) immediately implies that the momentum space and configura-
tion space predictions of (f| T*|i)—and therefore of three-body elastic scattering reaction
coefficients w (i—f)—also will agree. Including these off-shell double scattering contributions in
Tt keeps finite the three-body elastic scattering rate observed with fixed counters arranged so
as to exclude actual physical (i.e. on-shell) double scattering processes. On the other hand,
including the off-shell double scattering contributions in T* has the understandable (i.e.
physically believable, see §5.3) consequence that the total three-body elastic scattering rate,
obtained from integration of (2) over all ky;, Ry, kg which exclude single scattering and on-shell
double scattering processes, becomes infinite.

Although it is arguable that the results of this work are relevant to a variety of three-body
reactions, including inelastic scattering and rearrangement, for simplicity the actual analysis
here presented is restricted specifically to the three-body elastic scattering of a set of three
particles obeying (7), where the total Hamiltonian

H=T+V=T+Ty+ T3+ Vip+Vos + V3. (14)

contains only purely two-particle interactions V. Because the particles are supposed
spinless, each V,; is a function solely of the relative position r,,. The potentials V,4(,5) will be
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presumed sufficiently short-range and well behaved to guarantee convergence of integrals
such as

[arTstr ) Pr.) (15)

over all r,4, provided F(r,,) is bounded and integrable in any infinite volume; in particular the
convergence of (15) at infinite r,; will be supposed rapid and absolute. The total kinetic energy
operator

_ R, B, R

2
o Vi (16)

is not to be confused with the transition operator T, of course.
Reactions for which the above claim of relevance is defensible—despite the severe restrictions
imposed in the preceding paragraph—include, for example, radiationless electron—ion recom-

bination in a hydrogen plasma
e +e +Ht—>e +H. (17a)

The results of this publication also should be relevant to the theory of two-body reactions
producing three outgoing products, e.g. electron ionization of atomic hydrogen

e-+H->e +e-+H, (170)

because transition matrix elements for (176) frequently (though not necessarily) are expressed
in terms of time-reversed wavefunctions, i.e. in terms of wavefunctions describing the collision
(17a) inverse to (175). Similarly, this investigation’s results should be relevant to deuteron
breakup in collisions with a heavy nucleus A

d+A—->p+n+A. (17¢)

Of course, the considerations of this publication will be most relevant and least dispensable
in the theory of three-body reactions which actually produce three outgoing products. When
estimating the rates of such three-three’ reactions—unlike the situation with, for example, the
‘three-two’ reaction (17 a) whose rate is related by detailed balancing to the rate of the ‘two-
three’ reaction (17 b)—the complicating presence of non-three-body scattered parts cannot be
avoided merely by estimating the rate of the time-reversed reaction. As a matter of fact, three—
three reactions of actual interest are not uncommon, especially in the field of chemistry. For
example, the reaction

0,+CO +M->0,+CO,+M (18a)

(where M designates any one of many possible third bodies) is a proposed member of the chain
of reactions involved in the combustion of GO + O,. Also, many atomic collisions bearing on
chemical reaction rates are of this three-body in, three-body out type, e.g. the recently studied
reaction between molecular nitrogen metastables in the presence of a noble gas, namely

N3 (®Aw) +Ny(3Aw) + Xe > Ny(X15F) + Ny(X1ZF) + Xe*, (185)

where the asterisk indicates an excited state of Xe. Furthermore, the generic forms of atomic
collision processes frequently cited as important in gaseous discharges or in aeronomy include:
three-body associative ionization

X+Y+Z>X+4+YZ +e™ (18¢)
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three-body ion pair formation X4+4Y+Z->Xt+Y-+Z (184d)
and three-body dissociative recombination
e+ XYt+Z>X+Y+Z (18¢)

In a sense, therefore, this publication is a first step in the direction of deducing correct formal
expressions for the reaction rates of three-three processes such as (18), especially if—as must
happen on occasion—the three—three reaction of interest can proceed via two successive purely
two-body reactions. For example, suppose one desires the truly three-body rate of the three—three
. t'
reaction (1,2} +3+4->1+2+(3,4}, (194)
involving the four particles 1, 2, 3, 4, where the braces denote a bound state; i.e. in the reaction
(19 a) particles 1 and 2 are initially bound to each other. Suppose further that (19 @) can proceed
via the successive two-body reactions

{1,2}+3—>1+{2,3}, (195)
{2,3}+4—>2+{3,4}, (19¢)

Then (in complete analogy with the necessary subtraction of on-shell but only on-shell contribu-
tions from the double scattering process consisting of 1, 2 scattering followed by 2, 3 scattering
when computing the truly three-body elastic scattering of particles 1, 2, 3) computation of the
truly three-body rate of the inelastic reaction (19 a)—i.e. computation of that rate, proportional
to the reaction volume 7, which would be observed under experimental arrangements preventing
or eliminating the successive reactions (19 #) and (19 ¢)—presumably should subtract -function
contributions arising from the successive on-shell inelastic two-body reactions (195) and (19¢),
but probably should retain contributions from successive off-shell reactions (194) and (19¢).
Hopefully, retention of these off-shell contributions will not cause the total truly three-body rate
of (194) to become infinite; although infinite total truly three-body rates are believable for
elastic scattering, they are not believable for inelastic processes such as (19a).

I conclude this introductory section with the observation that, to facilitate holding on to the
main thread of the discussion in §§ 2 to 4, many mathematical details have been relegated to a
(perhaps excessively large) number of appendices.t I add that to a considerable extent the
results to be described amount in effect to an amplification (often essentially a correction) of
assertions concerning three-body reactions which previously (Gerjuoy 19584, b) were inferred
somewhat off-handedly from conclusions which had been carefully derived for two body reactions
only. I further remark that a (admittedly not exhaustive) survey of the literature discloses
comparatively few authors who have examined three-body scattering from the standpoint of
configuration space; illustrative and worthwhile contributions in this category include those of
Zickendraht (1967) and Nuttall (1967), as well as (more recently) Noyes (1969) and Lieber,
Rosenberg & Spruch (1969).

2. THE LiMIT ¢—>0

From the standpoint of configuration space scattering theory, the specification of ¥{*)(E)
provided by (8), though undoubtedly valid, is less useful than might have been hoped. For the
purpose of predicting @ (i—f) one requires knowledge of the asymptotic behaviour of ¥{"(r; E)

1 See footnote, p. 198.
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at large r; this asymptotic behaviour is difficult to ascertain from (8), however, because in
practice it generally is not possible to evaluate explicitly the limit of ¥i(£ +ie) as €+ 0. To be
more specific, note that (84) and (114a) imply

&N (r; E) = lin% Dy(r; E+1i¢). (20)

e—>

Then from (84) and (20) it is difficult to ascertain what parts of ®{* correspond to two-particle
collisions, what parts correspond to true three-particle scattering, etc. In fact, for three-body
elastic scattering, when plane waves are incident and the Green function Gj in (84) becomes
identical with the free-space Green function (defined below), it even is difficult to see from (8 4)
and (20) that @) can have parts corresponding to propagation in two-body bound states,
representing, for example, recombination reactions like (17 a).

For these and similar reasons—in configuration space scattering theory—one seeks alternative
(to (8)) specifications of ¥{*), which avoid the necessity for taking the limit ¢ 0. Possible
specifications of this sort, and their ensuing difficulties, are examined in §§ 2.2 and 2.3, as well
as in § 3; the immediately following §2.1 explains the notation employed and defines various
quantities, e.g. the Green functions, more carefully and thoroughly than was convenient in the
preceding introductory section.

2.1. Definitions and notation

For the three-particle collisions of present interest, in (8) to (10)

Vi = exp{i(ky. 11+ Ry 15+ kg . 13)} = exp {ik;. 1}, (21a)
Vi=V="s+Vog+Va1, (210)
2
Hi=T= T+ T+ T = 5(- 5, V), (210)
h2 h2 ﬁ2

R &4 —_}2 —__}2
E = 2mlk”+2m2k2‘+2m3k3i’ (22)
L=6(r— 1) 8(ry—13) 8(ry—13), (23)

and Gj(A) is the known (Gerjuoy 19584) free-space Green function Gx(A) for three particles
having masses m,, my, my. It will prove useful to have Gz(A) for a system of n particles having
masses m,, My, ..., M,. Namely, for such a system,

Gp(r;r';A) = <2m1)%... (2mn)%i(i)})l)lml’|) (24)

hE 72 ) 4\2w le—¢'|?
where D(n) = $(3n—2), (25a)
0 <argA < 2m,
0 < argy/A <, } (250)

is the Bessel function of the third kind; the 3zn-dimensional vector r denotes the collection of
3-dimensional vectors 7y, ..., r,; and the 3n-dimensional vector p = (pq, ..., p,) is defined by

2m,\t
Pu = (?) LP2 (25 d)
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For arbitrary incident ¢y (not necessarily purely plane wave) the ‘outgoing’ Green function
G{P)(E), which presumablyt satisfies (104) for real A = E, is defined by

G (r; r'; E) = lim Gy(r; 13 E +ie). (264)
e—>0

For 4 of (21a), G{*) of course is identical with the outgoing free space Green function for a

three-particle system
G (r;r'; E) = lim Gp(r; 1’5 E + ie), (26 0)

e—>0

where Gy is given by (24). Similarly, the outgoing total Green function GV(E) in (5) is
defined byl

GU(E) = lim G(E +ic) = 15‘3‘}?111?_1‘6 (274)
where € > 0 and, as in (10), for complex A
GA) = (H=-2)"1 (27b)
is the unique quadratically integrable solution to
(H-2)G = 1. (27¢)
It is presumed? that GP(E) satisfies
(H—E)GP(E) = 1. (274)

Equations (26) make explicit the fact that the Green functions G{(E), G{P(E +i¢), GP(E),
etc., are operators, i.e. have configuration space representations depending on both primed and
unprimed coordinates. On the other hand, the interactions V,; and V appearing in, for example,
(85), (9), (14), (21b), etc., are point functions, in that V,,(r) = V,4(ry, 15, 13) depends only on
unprimed variables. However, because T'(E) on the left side of (5) also is an operator, the first
term on the right side of (5) cannot be merely a point function. In fact, in (5) and henceforth,

V(r;r') = V(r)o(r—r). (27¢)

Except for occasional instances, such as (5), it is an unnecessary complication to work with the
operator V rather than the function V. For example, in (5) itself, the r, r’ element of the second
term on the right side is V(r) G (r; r') V(r'), where no integration over r or r’ is implied; it is

t It is not obvious that G‘M(E) defined by (27a) satisfies (27d), because demonstrating (27d) from (274) and
(27¢) involves the demonstration that interchange of the order of differentiation and limit ¢ — 0 is justified. Clearly
such interchange need not be valid, e.g.

dl' €si ! :t:limdes‘n !
e elino sin . fara F 1 "IE

Similarly, it is not obvious that W{+)(E) defined by (8a) satisfies (7). Nevertheless, on physical grounds, it appears
unlikely that either G(E+i€) or ¥;(E +i€) becomes so wildly a fluctuating function of  as ¢ — 0 that interchange
of order of differentiation and lim ¢ — 0 becomes unjustified. In any event, excluding exceptional energies E
(see footnote I, p. 201), the theorem that ¥{*)(E) exists and satisfies (7) apparently is proved in §§ 8 and 9 of Faddeev
(1965), subject to some probably inessential restrictions concerning the number of discrete eigenvalues of the
associated two-particle Hamiltonians T + T+ Vi, etc. (in their individual two-particle centre of mass systems).
Under the same restrictions, moreover, G*(E) apparently exists and satisfies (27d). However, I shall not pretend
that I have completely mastered all the intricacies and implications of Faddeev’s mathematics.
1 See footnote f, p. 201.
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equally correct, but obviously pointless, to express this same term on the right side of (5) as
VGV, whose r, r’ element consistent with operator notation is

(r| VGOV |r) =x{dr”drmlxr;r”)GH90”;r”)PKr”;rU, (27)

where integration over the intermediate variables r”, r”

now is implied.
Expressions in the centre of mass system tend to be rather more complicated and awkward
than in the laboratory system; correspondingly, it is difficult to devise a wholly satisfactory

centre of mass system notation. I shall use

R = M="Y(myri+myry+myty), (284a)
M = my +my+msg, ‘ (285)
K = ky+ ky+ ks, (28¢)
E = E—#12K2[2M. (28d)

Equation (284d) for the centre of mass energy E illustrates the previously explained} procedure
for symbolizing corresponding quantities in the centre of mass and laboratory systems. I also
shall employ

Ry, = %2 = Ry, (294)
Qo3 = 11— Ryy = 115+ P Tos = (30, (295)
Ky = M~[(mg+my) ky—my(ks+ ky)]

=@~%K=Kw (29¢)
keaa = mf:m3 2_m;z—zmg ky = Ko+ mfl—zm3 Ko

_ (K12+ o Ky) = =y (294)
e = m”fl-i_m’;z = M1, (29¢)
g =), (29/)

and permutations thereof, which—to avoid error—are best performed cyclically. Quantities
like K of (28¢) and Kj, of (29¢) should havet subscripts i, f distinguishing between initial and
final values; however, to keep the notation as uncomplicated as possible, in what follows the
subscripts i, f will be dropped whenever doing so can cause no confusion. It is readily confirmed
that fik,,/p4, equals the (classical) relative velocity v; — v, between particles 1 and 2, and that
tK 5/ usp, equals the velocity of particle 3 relative to the velocity of the centre of mass of particles
1 and 2; alternatively, #K,,/ms equals the velocity of 3 relative to (the velocity of) the centre of
mass of the entire three-particle system.

1 See footnote, p. 199.
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The kinetic energy operator 7'in the centre of mass system is given in terms of 7}, (16), by

T = — (#2]2M) V% + T, (30)
where, when R, ry,, 7,5 are the new variables replacing ry, r,, 15
- #? fi r2
I=——V3——-V2 +o- V \Y 3la
2/[/31 317 2,“23 23 31 Y23 ( )

on the understanding that Vg denotes the gradient with respect to r,;, while V,; denotes the
gradient with respect to ry4. If 1y, 7,, 75 are replaced by R, 13, q3,, the same operator 7" takes the
diagonal form B 52 e
I'=———V§—5— Vgal, (316)
R
where Vg, denotes the gradient with respect to g3;. The centre of mass system Hamiltonian
of course is H=T+V = T4V + Vg +Vy (324)
and the centre of mass system Schrodinger equation is
(H-E)¥ = 0. (325)

The desired solution to (324) describing the actual physical situation in the centre of mass
system can be written in the form (11 4), where the incident wave ¢ in the centre of mass system

is defined by i = exp iK. R} ¥t (33a)
which makes  ¥1(E) = exp {i(Ksy. 735 — Koz 731)} = exp {i(Ka;. @1 + Bay. 751)} (330)
and cyclical permutations thereof. Evidently, corresponding to (9) -
(Hi—EYyi = (T+V-V—E)¥1 = 0. (33¢)
Moreover, P{*) is specified by the analogues of (8). Specifically,
PHI(E) = lim Py(E+ie) = lim[Y(E) + Bi(E+ie)], (34 a)

e—0 e—0

where, for ¢ > 0, ¥(E +1ie) is the unique bounded solution to

P(E+ie) = Yri(E) — 27 Vi'171(E+16) (34 b)
i—
In (335) and other preceding equations
~  h? 2 h? h? h?
E=—K&i+—K4y+—Ky3. Ky = — k4 +—K%,. 35
2,“31 23 2///23 31 my 23 31 = 2/,& 31 2,“2 31 ( )

The above definitions, taken together with (54) to (55) below, make believable—and go a long
way toward establishing—the simple rule (illustrated by (33) and (34)) that the centre of mass
analogue of any formal relation between ¥, ¥, G, E, etc., is obtainable simply by barring these
laboratory system quantities. However, because they are so important, I shall write down
explicitly the definitions of some of the centre of mass system Green functions. In particular,
for complex A, the centre of mass system total Green function

GA) = (H-2)"1 (364)
1 See footnote §, p. 201 and footnote 1, p. 208.
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is the unique quadratically integrable solution to

(H-2) GQA) =1, (36b)
where the unit operator 1 in the centre of mass system is defined by

1=¢8R-R)1, (37)
i.e. 1 denotes the unit operator in that six-dimensional subspace—of the nine-dimensional space

spanned by r,, r,, r,—which is orthogonal to R (for a more precise delineation of this subspace
see appendix F). Similarly, in (34 5) G(A) = (H— ) (380)

satisfies (Hi—A) G, =1. (38)
The centre of mass system outgoing Green function associated with the total Hamiltonian ist
GH(E) =1lim G(E+ie). (39a)
€0
Correspondingly, the centre of mass system outgoing initial Green function is

G(H(E) = lim Gy(E +ie). (395)
e—>0

It is also useful to note that the Jacobians of relevant transformations—e.g. from laboratory
frame to centre of mass frame, or between various sets of centre of mass frame coordinates—
typically have magnitude unity. Thus

dr =dr,dr,dr; = dRdF, (40 a)
df = dry, dryy = dr,dry, = dr,dqy,, etc. (405)
Correspondingly, in (37)

1= O(1gy— 1y) O(Tgg— o) = (15— 11p) O3 —13)
= 0(ryg—r19) (12— q12), etc. (41)

Equations (315) and (41) now show that—for the incident 1 of (33 5)—the explicit form of
G{™) = G4 in the 14, 3 representation is found from the free space Green function (24) for
a system of two particles having masses pg;, #or (associated with the coordinates 7y, ¢,
respectively).
2.2. The outgoing boundary condition

I now return to the problem of finding useful—from the standpoint of configuration space
scattering theory—specifications of ¥{*), namely specifications which avoid the limit ¢ 0. This
section will be concerned only with possible specifications of this sort which start from the
Lippmann—Schwinger equation for ¥{*), but which then attempt to modify it appropriately
(e.g. after iteration). Possible specifications of ¥{*) based on the behaviour of G (r; r') as the
source ' moves to infinity are examined in § 3. For the reason explained in the previous section
following (35), it seems clear that corresponding laboratory and centre of mass frames formula-
tions cannot be essentially inconsistent, although there are the complications (mentioned in § 1
and discussed in § 4.1) associated with the §(K;— K;) factor appearing in the laboratory system
matrix element (f| T |i). In the remainder of this work, therefore, especially in § 3 and the rest
of the present section, the analysis and discussion often will refer predominantly to the laboratory

t See footnote I, p. 201 and footnote 1, p. 208.
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(or centre of mass) system because application to the centre of mass (or laboratory) system is
immediate. When there is no special reason for favouring one frame over the other, the discussion
usually will refer to the laboratory frame, mainly with a view toward minimizing notational
complexity.

The most obvious means of avoiding the limit ¢ - 0 in the specification of ¥{*)(E) is to replace
(Hi—E—ie)~! in (8b) by the outgoing initial Green function G{* defined in (264). In other
words (writing in detail the operations implied by the condensed operator notation employed
in (85)), (85) is replaced by

V(N1 B) = ya(r) = [ dr GO (rs s BYH(r) WO (r's ). (42)

Although (42) does indeed avoid the limit ¢— 0, it is by no means evident that (42) is a valid
alternative to (8), i.e. it is by no means evident that a solution ¥{")(E) to (42) need be identical
with the solution Y{")(E) specified by (8). The reason there is some question concerning the
equivalence of (8) and (42) is that in effect (42) has been obtained by interchanging the order
of integration and limit as e 0 in (8 4). To be specific, the integral on the right side of (42) is

fdr' {lim Gy(r; r'; E+ie)} Vi(r') {lim ¥(r'; E +ie)}. (43 a)
e—>0 €0
Therefore ¥{*) from (42) is identical with ¥{*) from (8) only if

lim | dr'Gy(r; r'; E+ie) Vi(r") WPi(r'; E+ie)

e—>0
= | dr’ ling {Gi(r; r'; E+ie) Vi(r') Wi(r'; E+ie)}.  (435)

I shall discuss the question of the validity of (43 &) later in this section. In the meantime I note
that—whether or not the equality (43 ) holds for the functions ¥i(E +ie) appearing in (8)—
equation (42) cannot be a satisfactory specification of the desired solution ¥{*’ to (7) describing
the actual collision of three initially free particles, because it is known (Gerjuoy 19584; Foldy &
Tobocman 1957)—and is demonstrated in § A.9.2 of appendix A—that the function ¥{* defined
by (8) generally will not be the only solution to (42) when particle rearrangements (e.g. reaction
(184a)) can occur. In other words, as Faddeev (1961) stresses, without imposition of additional
requirements, for instance the boundary condition that the scattered part ®{*) of ¥{*) be
‘outgoing’, (42) does not suffice to determine ¥Y{*)(E) in collisions of present interest, even
though (85) does have a unique solution ¥;(E +ie) for every ¢ > 0. There is no need here to
discuss the by now well-known formal mathematical reasons (Watson & Nuttall 1967; Weinberg
1964; Lovelace 1964)—associated with the fact that the kernel of the Lippmann—Schwinger
equation is not of the Hilbert-Schmidt type—underlying the failure of (42) to have unique
solutions. ,

In potential scattering, where (42) is satisfactory because rearrangements cannot occur, use
of the ‘everywhere outgoing’ boundary condition enables replacement of (42) by an explicit
formula for ¥{*) (not an integral equation), of course still avoiding the awkward limit ¢ 0. The
generalization, to many-particle collisions, of this potential scattering procedure for specifying
¥(+) is not wholly obvious, but has been expounded in the literature (Gerjuoy 19585). In parti-
cular, it can be proved (see §A. 9.1) that &{+) defined by (114) is given by

B () = — f dr'G(r; 13 EYVA(t) yr(r') = — Gy, (444)



CONFIGURATION SPACE THEORY 213

provided the surface integral over the sphere at infinity in the nine-dimensional r-space
SI(GD, PF)) = de. W[GH(r;r"), D (r)] = 0 (44 0)

for all r'. In (44), GD(r; r’) is the configuration space representation of the laboratory system
outgoing total Green function defined by (27), while W is a nine-dimensional vector, whose
components (along the same unit vectors as the components of r,) are defined by

W,[X,Y] = (h2/2m,) (XV,Y - YV X). (45 a)

In terms of W, the Green theorem in r-space (the nine-dimensional configuration space) is

fdr z% (XV2Y—YVEX) = —fdr(XTY—— YTX) = L dS.W[X,Y].  (450)
Of course, (44 a), taken together with (11a), is the laboratory system version of the previously
quoted (13).

It can be shown that if (44 b) holds then (44 4) must hold, and conversely. Moreover, (44 b)
will be satisfied if @{*)(r) actually has the same asymptotic behaviour at infinity in r-space as
does G(r; r'). Consequently the condition (44 5) appears to be the desired generalization, to
many-particle collisions, of the ‘everywhere outgoing’ condition which prescribes @+ in the
case of potential scattering. Correspondingly, because (44 a) is a formula, not an integral equa-
tion, for @{*) in terms of i, imposition of the condition (445) indeed uniquely specifies the
desired P{") of (11 a). Of course, in a sense terming (44 a) a ‘formula’ for @{*is a misnomer, since
the total Green function G in (44 q) generally is not known in a closed form; in fact, to actually
obtain G¥, the Lippmann-Schwinger equation for GV in terms of G{* normally would be
employed (Watson & Nuttall 1967). Nevertheless, mainly because the asymptotic behaviour of
the outgoing GV (r; r’) as r— o0 is less complicated and more easily visualized than the corre-
sponding behaviour of @{(r), one can hope that—by being a formula for @{P(r) in terms of
GD(r; 1')—(44 a) has simplified the task of ascertaining the limit of @{)(r) as r —oo. This hope
is not unjustified, as subsequent sections discussing modifications of (44 4) will show. As they
stand, however, (44) do not furnish a satisfactory procedure for specifying ¥{*), by virtue of two
not unrelated difficulties. In the first place, (44 5) can hold even though @{* has incoming parts.
That is to say, the ‘outgoing condition’ (44 ), though it does uniquely specify a solution ¥{+)
of (7), does not necessarily guarantee that the scattered part of ¥{*) is ‘everywhere outgoing’,
i.e. has no incoming parts; more particularly, (44 b) does not necessarily guarantee that @{*) has
the same asymptotic behaviour at infinity as does G, In the second place, and more seriously, the
integral (44 a) can be divergent, in which event the proof that (44) yield a formula for @{)(r)
breaks down. Moreover, even if one assumes that the proof somehow can be fixed up, specifica-
tion of ¥{") via a divergent integral (44 a) must be considered unsatisfactory unless the divergence
issoreadily removable that it causes no real difficulties, as, for example, when it can be regarded
as a consequence of total momentum conservation, removable merely by formulating the
collision in the centre of mass frame.

As a matter of fact, the divergence of the integral (44 q) is not readily removable when ¢ is
given by (21 ), and when bound two-particle states u;(r,4) can exist (see § A. 4). The divergence
is manifested by terms—in the laboratory or centre of mass versions of (44 a)—which behave
like d-functions. Actually, these d-functions vanish on the energy shell, i.e. the centre of mass

14 Vol. 270. A.
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version of (444) is not an unbounded integral. More particularly, whenever, for example,
a bound state u;(r,,) can propagatef at energy £, the integral (to be compared with (44 a))

—fdr'G(Jr)(r; s EYVi(r') (v E') = — GO(E) Viyn(E') (46)

contains an r-dependent term proportional to

O (E—¢;) —J{E' — (Pk13[2110)}]- (47)

In the above equations, which have made use of (284d) and (35), yri(r'; E') is given by (21a),
but E'—defined by (22) in terms of the components of k{ = k’—is not necessarily equal to the
energy E characterizing the Green function G (E). Also, the bound state eigenfunction u;(r,,)

satisfies _p

(5 V2o +Vaa— ) y(ria) = . (48)
Because ¢; is intrinsically negative, the d-function (47) assuredly vanishes on the energy shell
E’ = E > 0, where (46) reduces to the integral (44 4) for @{*)(r; E). Similar (vanishing on the
energy shell) d-functions occur in (46)—though not in its centre of mass version—whenever
three-body bound states u;(r,,; 7p3) exist] (see § A 5). It is easily seen (§ A 6) that the argument
of the centre of mass analogue of (47)—or equivalently, the argument of the d-function (47) when
conservation of total momentum K’ = Kis postulated—vanishes when the unprimed and primed
speeds of particle 3 relative to the centre of mass of particles 1 and 2 are equal, a result which
seems quite reasonable physically.

Although the d-function (47) vanishes on the energy shell, nevertheless the demonstration that
terms such as (47) occur in (46) is very relevant to the validity and utility of the admittedly
on-shell formula (44 ) for ¥{*). In particular, the result (47) means that the formula (44 a)—or
its centre of mass version implied by (114) and (13)—necessarily involves a non-convergent
oscillatory integral whenever two-particle bound states exist for any particle pair «, . Moreover,
because many such bound states can exist, the integral (44 a)—and its centre of mass version—
generally cannot be made convergent in a simple fashion, e.g. by factoring out or subtracting
away a d-function. In addition, these dJ-functions (47), though possessing physically quite
reasonable arguments as has just been pointed out, appear to be wholly non-physical con-
sequences of the invalid (see also the immediately following paragraphs) mathematical manipu-
lations employed to deduce (44a); it will be shown in §2.3 below that (44 a) for &{*) can be
replaced by a formula which—while still avoiding the awkward limit €— 0—expresses @{™) in
terms of integrals assuredly convergent on the energy shell, and at worst logarithmically divergent
ofl the energy shell, even when two-body bound states exist; in the centre of mass version of the
formula developed in § 2.3, integrals remain convergent on the energy shell even if three-body
as well as two-body bound states exist. Correspondingly, using (44a) (or its centre of mass
version) to determine the asymptotic behaviour of @{*)(r) at large distances, or to evaluate
scattering amplitude integrals involving Y{*)(r), well might result in predicted scattering
coefficients which are non-physically divergent or otherwise erroneous. It also is noteworthy that

t With E regarded as a parameter not necessarily > 0, the condition for u,(r;,) to propagate, i.e. to reach
infinity relative to particle 3, is of course E—¢; > 0.

1 Itis supposed that the energy ¢; of the three-body state is < 0. If there ever should be any need to consider
(perhaps very long-lived) three-body or two-body states u; having energy ¢; > 0, the assertion referenced—and
similar assertions throughout the text—will remain valid provided ‘exist’ is replaced by ‘can propagate’, see
preceding footnote, this page.
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these 0-functions (47) can make non-vanishing (finite or infinite) contributions to (44 a) when
&{F)(r) is estimated from an approximate estimate of G (r; r'; E), even though such non-
physical contributions assuredly vanish on the energy shell when the exact G‘(E) is employed.
To put it differently and more generally, use of formally non-convergent expressions like (44 a)
is dangerous because approximate numerical computations starting from such expressions can
produce large contributions from terms which in exact calculation are small or otherwise
non-contributing.

I conclude that, for incident waves ¥y of (21 a), specifying P{*) via (44) is just as unsatisfactory
as specification via (42). I add that from the proof yielding (44) one readily sees that whenever
the volume integral (44 a) contains d-functions of the type discussed in the preceding paragraph,
the surface integral (44 b) contains non-vanishing terms dependent on the radius of the spherical
surface at infinity in r-space. Therefore, for incident waves ¢ of (21 a) when bound-states can
exist, the relation (44 b) is neither a meaningful nor a useful statement of the sought-for boundary
conditions presumably specifying the desired solution ¥{* to (7). It follows, still for incident
waves ¥; of (21a), that it generally is impossible (not merely impractical) to employ (44 5)
to eliminate unwanted solutions of (42).

I now observe that the divergence—and consequent lack of utility—of the integral (44 4) can
be associated with an unjustified interchange of order of integration and limit e—0. To be
specific, (8 ) implies ¥1(E +ie) is the unique solution to the differential equation

(Hi—E—ie) ¥y = (Hi—E—ie) Y1 -y ' (49a)
which, using (9), can be rewritten in the alternative forms
(H—E—ie) ¥ = —iey, (490)
(Hi—E—ie) &y = - Py, (49¢)
(H—E—ie) @y = Vi, (494d)

where @; = @(E +1ie) defined by (84). Equation (49¢) obviously yields our original starting-
point (84). Equation (49d), however, implies one also can write

Bu(E+ie) = = gy Tiyn(E), (50a)

where ¥1(E), the incident wave of (8) and (21a), does not depend on €. Writing in detail the
operations implied by the condensed operator notation, (50a) becomes

Di(r; E+ie) = —fdr’G(r; r's E+ie) Vi(r") (1’ E). (500)

Therefore, recalling (20) and (27), ¥{™ obtained from the formula (44 a) will be identical with
the ‘true’ ¥{*) defined by (84) only if

lim | dr'G(r; v'; E+ie) Vi(r") i(r') = fdr’ lirgl {G(r;r'; E4ie) Vi(r") Yu(r")},  (Bla)
e—>0 €—>

i.e. only if (in condensed notation)

lim (G(E+ie) iy} = {lim G(E+ie)} i (514)

e—>0 €

14-2
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In other words, the assertion that (44 a) specifies the desired @} is equivalent to asserting that
it is legitimate to interchange the order of integration and limit ¢ 0 in the left sides of (51 a)
or (51 b), which furnish our original and correct (though not useful) specification of @{*(E). But
it already has been explained that the integrals on the right sides of (51) are divergent when r;is
given by (21a) and when there exist bound two-particle or three-particle states. On the other
hand, the limits €0 on the left sides of (51) presumably exist, since otherwise—recalling
(20) and (50 b)—our original specification of ¥{*)(E) via (8) would not have been meaningful.
It follows that (514) cannot hold when bound two-particle or three-particle states can occur,
because in these circumstances the limit ¢ = 0 on the right side of (51 a) yields a non-convergent
integral (i.e. does not exist), whereas the limit ¢ — 0 on the left side of (514) presumably always
exists. The incorrect conclusion that @{*)(r) contains d-function contributions vanishing on the
energy shell results from insistence on the validity of (51a), i.e. insistence that (444) is a valid
formula for @{*), in circumstances (existence of bound states) when (51 4) in fact is invalid.

It is worth noting that the previous paragraph implies the customarily employed relation

VP(D(E) = V1 —GH(E) V] = [V—-VGCH(E) V] = T(E) Y, (51¢)

following from (5) and (44 a), fails (in configuration space, at any rate) for yr; = y1(E) of (21 a)
whenever bound two-particle or three-particle states exist. Alternatively, because the right side
of (51¢) involves the integral (44 a), the relation

lim (T(E+ic) y(E)} = {lim T(E-+i)} y(E) (514)

can be expected to hold in configuration space only when neither bound two-particle states nor
bound three-particle states can occur; in (51 d) the definition of T'(E +1i€) is given by (5), except
that G(E +ie) replaces G (E). Similar assertions pertain to the centre of mass frame wherein,
however, the occurrence of three-particle bound states is irrelevant. Note further that when
bound states occur, the above considerations do not necessarily rule out the possible validity of
(51¢) and/or (51d) in the momentum representation, where different integrals are involved.

That (51 a) is invalid when bound states occur has been made clear; whether it is valid when
bound states do not occur is less clear. In the absence of bound states the integrals

DP(r) = —fd"{G‘“(f; '3 E) [Via(112) +Vas(735) +Var(rs1)] exp [i(Ry. 11+ Ry 1 + g 13) ]}
(52a)
@H(i) = _fdi" {C(Jr)(i'S (- E) [V1a(112) +Vas(733) +Var(r31) Jexp [i(Kyy . 15 — Kopg. 139) 1}, (520)

expressing respectively (444) and its centre of mass version for ¥ of (214), do converge (see
§§ A. 5 and A. 6). On the other hand, the convergence of the integral on the right side of (51 a)
is by no means mathematically sufficient to imply that (514) holds. In general (see §A.8),
guaranteeing (51a) requires proving that the sequence of infinite integrals on the left side of
(51 a) converges uniformly (Whittaker & Watson 1946) as e— 0, a property not easily demon-
strated. It can be argued, however (see § A. 8) that—for Green functions and wavefunctions
actually occurring in collisions involving short-range forces—the left side of (514) indeed will
converge uniformly as ¢ - 0 whenever the right side of (51 &) converges. In other words, I argue—
and hereafter in this work shall assume—that for relations such as (51 ) occurring in scattering
theory, the mere existence of the integral on the right side guarantees the interchange of order
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of integration and limit ¢— 0 actually is valid; it appears (see § A. 9) that this assumption is
consistent with—though more generally useful than—a previously employed (Gerjuoy 19584, b)
criterion for the validity of interchange of order of integration and limit ¢ — 0. I believe, therefore,
that (44 a) and its centre of mass version are valid specifications, of @{*) and @{*) respectively,
when bound states do not occur.

I add that the matrix elements (f| T(E) |i) or (f| T(E)|i) defined by (5) and (6) involve
precisely the integral (46) we have been discussing. Thus the results of this section bear on the
physical significance of bound state contributions to these matrix elements, as well on the
validity of the assumption that the limit of (f| T'(E +1ie) |i) as € — 0 is identical with (f| T'(E) |1).
On the other hand, I surely do not want to give the impression that the comparatively qualitative
considerations of this section can replace detailed quantitative examination of (f| T(A) |i) as
a function of A = E +ie, for interactions V,4(r,;) wherein the analysis can be carried through
(as in the papers of Rubin et al. (1966, 19674, b)).

I now return to (43 ). As it happens, the integral on the right side of (43 5) does converge (see
§ A.7) when ¢ is given by (21 a), so that the equality (43 b) apparently does hold for the collisions
of three initially free particles. Correspondingly, the integral equation (42) does have a solution
which is identical with the desired ¥{*’ from (8). Unfortunately, (42) has other solutions than
P+ defined by (8), as has been explained. Similar assertions (to those of this paragraph) hold
for the centre of mass versions of (42) and (435).

To close this section, I remark that the defining equations (27) and (86) can be shown to imply
the expansion (valid whenever ¢ > 0),

G(r;r'; E+ie) = ——l—fdlee"e-("""') G(i‘; 7' E——@2+ ie) . (534)
(2m)® 2M

Using (53 a), it then is readily shown that for every e

G(E +ie) ri(E) = &R G(E +ie) i (E). (530)
Consequently, recalling (33 a),

Yi(r; E+i€) = &R (F; E+ie), (54 a)
&y(r; E+i6) = e®-RP;(#; E+1ie), (54 b)
where ¥; and ¥, are the unique solutions to (85) and (344) respectively. Correspondingly,
letting ¢—0 in (54) WD (1, E) = K-R PO F), (55 )
BO(r; E) = KR E(O(F; I, (55)

which explicitly manifest conservation of total laboratory momentum 7K in the laboratory frame
wavefunction P{P and its scattered part @{*). Of course equations (54) to (55) are well known and
as expected; I merely am remarking that these equations are readily derivable in configuration
space from the fundamental definitions of the quantities involved, without recourse to operator
or diagrammatic techniques. The factor ¢!X-® relating @{P and &{" in (55 b) makes it manifest
that the laboratory frame scattered part @{*) need not behave asymptotically like the everywhere
outgoing G, and even can have incoming parts, as asserted beneath (455). Naturally these
¢'X-R factors are removed by formulating the collision in the centre of mass frame from the very
outset. As will be discussed in the next section, however, neither does the centre of mass frame
scattered part @{P(#)—as correctly defined by (114) and (34)—behave asymptotically at large
# as does GV(#;#'); indeed there are incoming contributions to ®{*(#) as well.
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2.3. Subtraction of two-body scattering terms

The previous section has explained the deficiencies of (42) and (44 4) (and their centre of mass
analogues). In this section I shall seek an alternative specification of ¥{*), of a kind which is
mathematically unexceptional (i.e. involves neither divergences nor integral equations whose
solutions are not unique), but which permits a relatively straightforward determination of how
@{P)(r) behaves at large r. In particular, I shall attempt to accomplish this purpose by rewriting
the left side of (the centre of mass analogue of) (514) so as to obtain a form which—for ¢ of
(21 a)—always permits interchange of the order of integration and limit ¢ 0. From § A. 8 and
the discussion following (52), it appears that what is required is a means of rewriting the left
side of (the centre of mass analogue of) (51a) so as to obtain an integral which remains con-
vergent after the interchange in question is performed.

It is reasonable to try to achieve this convergence by iteration of the formula (50a) for
@;(E +i€). A myriad of different iterations are available, of course. However, a clue as to how to
proceed is the fact that elimination of terms representing purely two-body scattering of 1 by 2
(with 3 unaffected), as well as of corresponding terms representing two-body scattering of 2 by 3
and of 3 by 1, apparently replaces the Lippmann-Schwinger equation for the total Green
function G by a new integral equation (see the end of this section) whose kernel is better behaved
(Weinberg 1964). Moreover, it certainly makes sense physically that two-body scattering terms
must be subtracted from ¥{", i.e. from &{), before specification of three-body scattering becomes

possible.
Introduce the Green functions Gy,(A), Gag(A), Gyy(A) satisfying respectively
(Hyg=A) Gy = (THTV5—A) Gy =1, (56a)
(Hog—=A) Gog = (T+TVp3—A) Gyg =1, (56 b)
(Hyy—A) Ggy = (T+V3—A) Gy = 1. (56¢)
Define also GH(E) = 11_{1’01 Gy (E +ie), etc. (57)

Then (as in (8) and (11)) with the incident wave ; of (214) the wavefunction representing
purely two-body scattering of 1 by 2, with 3 unaffected, should be

YP(E) = yri(E) + DG (E) = lim Py, (E +ie)
¢—>0

= lim [Y(E) + Pra(E+i6)] (58a)

where, recalling (49) to (50), ¥,(E +1ie) is given by the formula

. 1
Vip(E+ie) = w‘(E)_ﬁm——E——iele/f‘(E)' (586)
Presumably?t (58) guarantee (Hi,—E) P = 0, (59 a)
or, equivalently, (Hyy—E) D = -V, ¢y, (590)
. 1 . .
where PP (E) = —lim {———— Vis I,ﬁi(E)l = —lim Gpp(E +i€) Vyp 1. (60)
e—>0 H12 - E_ 1€ e—>0

1 See footnote t, p. 208.
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Therefore a suggested alternative way of writing ¥'{P)(E)—resembling but superior to (114) in
that purely two-body scattering terms explicitly have been subtracted from the ‘scattered

part’—is WD = i+ O + D)+ P+ B, (61)
where @), &) are defined as in (58) to (60), and where the quantity

B = O — D — AP — DD, (62
remaining after subtraction of purely two-body terms now hopefully represents the ‘truly
three-body’ scattered part of ¥ (termed @) in §1).

With (61) as a guide, the desired iteration of (504) is achieved as follows. For complex
A = E +ie, the Green functions G(A) and G,,(A), etc., are related by (Watson & Nuttall 1967)t

G = G~ Gyp(Vas+V31) G = Gro— G(Vog + V) Gy, (63a)
G = Gz~ Gops(Va1 +V15) G = Gog— G(Vyy +V3,) Gos, (630)
G = Gy — Gy (V12 +V2s) G = Gy — G(Vip+ Vg) Gia. ‘ (63¢)
Similarly G = Gp—GpVG = Gy —GVGy, (634d)

where Gp(A) = (T'—A)~! is the free space Green function, in the nine-dimensional space of
1y, 1y, 3 = 1, defined in (24) to (25). Using (63) after substituting (50 a) for the last term in (85),
one can write (for ¥; of (214a))
Pi(E+ie) = Yy — G(E+i6) [Taa + Vs +Var] Y1
= Y1+ {—[G1a— G(Vas + V1) Gra] Via ¥y
—[Gas — G(Va1 +V12) Gas] Vas Y1
~[Gs1— G(Vi+ Vas) Gaal Var Y1} (644)
= Y1— G Va1 — Gog Vg V1 — Gy Vg Y1
+{G(Vas +Va1) GraVia 1+ G(Vay +V12) GogVas Y1
+G(Via+Vas) Gaa Var Y1} (640)
In (64), as in (63), € & 0, so that all the Green functions are quadratically integrable. Thus the
integrals in (63) and (64) are convergent, and (because all integrals involve a Green function)
the interchanges of orders of integration implied by the manipulations yielding (64 4) should

be justifiable.
Taking the limit as e—0 in (63 a) yields

GO(E) = Gi(E) —lim {Gy(E +i€) Vo5 + Vea] G(E +i€)}
€—>0
= Gi(E) - lim {G(E +i€) [Va + Vo] Gra(E +ie) - (654)

As discussed in § 2.2, interchanging the order of the limiting and integration processes in (65 a)
is not obviously legitimate. However, when A is pure real, i.e. when € = 0, the integrals in (654),
unlike the integral in (44 4), converge whether or not bound states exist (see § A. 2). Therefore,
again as discussed in §§ 2.2 and A. 8, this paper assumes that
GH(E) = G (E) — GiP(E) [Vas +V31] GH(E)
= G (E) — GV(E) [Vo + Va ] Gi(E). (650)

1 For a configuration space derivation, without appeal to operator algebra, see Gerjuoy (19580).
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For the same reason the relations (63, ¢, d) are assumed to hold at real E, with all the Green
functions outgoing. As discussed in § 2.2 in connexion with (44), the validity of (655) can be
related (see also §A. 9) to the validity of the assertion that

| Las.wiewir v, 69511 = 0 (66)
for all 7', r", with W defined by (45 a).
Similarly, taking the limit as e—> 0 in (64 ), and recalling (61) and (62)
DIO(E) = HH; {G(E +i€) [Vas + Var] Gro(E +i€) Ny Y
+G(E+i€) [Vay +Vip] Gog(E +i€) Vog Y1
+G(E+ie) [Vig+Vas] Gy (E +i€) Vg i} (674)
which, using (60), can be supposed to yield
DI = GHVg+ V] {lin(} G Via Yri}+ GH [V + V5] {lin(} GogVas Y1}

+ G(+)[I/12 +Vas] {lirf)l Gay Vay 301} (67 b)
= — GH[(Vag+Va1) D3 + (Var + V1) PP + (Vo + Vi) P, (67¢)

because the integrals in (67¢) converge in the centre of mass system (see § B. 1). Specifically if

G = KR G5+,
B = ey, e | (08
then the right side of
B = — GO (Vg o+ Vay) B + (Vay +T2) DE + (Vig + V) Pi1] (69)

always is composed of convergent integrals, whether or not bound states exist. I add that the
laboratory system integrals (67 ¢) fail to be assuredly convergent only when three-particle bound
states u;( 1y, T'y3) can occur (see §B. 1).

The limit e-> 0 in (60) readily can be evaluated in configuration space, by essentially the same
procedure as is used to derive (53) to (55); the result is a mathematically meaningful closed form
expression for @ (E). Thus (67¢) (as interpreted by (68) and (69)) yields @§*) in terms of
meaningful integrals not involving any limits as € - 0. Correspondingly, in view of the possibility
of evaluating (60) in closed form, (61) becomes a formula—not an integral equation—for ¥{*) in
terms of convergent integrals involving Green functions at real energies only (recall, however,
the remarks in the paragraph beneath (45 5)). It appears therefore that the set of equations (60),
(61) and (67 ¢) provide the alternative specification of ¥{™ this section has been seeking. More-
over, granting the integrals in (69) really are convergent, it now also is possible to specify ¥{+
in terms of a meaningful new (replacing (44 b)) outgoing condition, namely

Jas.wicer ), ax0m) = o, (70)

provided it is understood that—because the integrals (67¢) need not converge whereas those
in (69) always do (for ¥; of (21 a))—the strictly correct condition is the centre of mass analogue
of (70). To verify the immediately preceding assertion, substitute (61) into (7), and use (9)
and (595). Then, still for ¥; of (21a),

(H—E) 0D = —[ (Vg +Vaa) PR + (Vr + Vo) DED + (Vio + Vi) D] (71)
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As in the derivation (Gerjuoy 19585) of (44 a) the equality (71) immediately implies that if (70)
holds, then (67¢) must hold, and conversely; in particular, solutions @+ to (71) are identical
with the ‘true’ @{") given by (67¢) if and only if the &+ from (71) obeys (70). However, as
discussed in § 2.2 in connexion with (44), the condition (70) is not mathematically meaningful
when propagation in three-particle bound states is energetically possible (see §B.1). On the
other hand, starting in the centre of mass system leads directly to the strictly correct result that
if the assuredly convergent (69) holds, then the assuredly meaningful centre of mass analogue of
(70) must hold, and conversely.

The aforementioned closed form expression for the limit in (60) is precisely identical with the
result usually quoted, whether obtained by operator techniques, diagrammatic methods, or
other procedures. As one expects, @{"(E) from (60)—representing as it does the isolated scattering
of the particle pair 1, 2—Ileaves unaltered the plane wave factors ¥R and el¥12-212 of (respec-
tively) (33 4) and the 1, 2 analogue of (33 b). Specifically,

¢§+)(E) = ¢!K-Relkan (P (1,3 ki), (72)

where the position and momentum vectors appearing in (72) have been defined in (28) and (29),

and where
P (1195 Byy) = — g (Eyy) Vg elhazerae (134)

= f Aria gl (F1gs Tia; Ero) Via(ris) exp {ikesg. 7). (73)

Hence ¢{3’ represents the outgoing wave (as a function of the relative coordinate r,,) in the centre
of mass system of particles 1 and 2, when these particles undergo an isolated collision (no particles
3 involved) with incident wave
: Y1 = e, (74 q)
corresponding to a centre of mass system (of particles 1 and 2) energy

h2k2,

e 2ptan (745)
It hardly needs to be added that the Green function g{3’ satisfies
B ,
[% Vie +Via(r10) — E12] g3 (1r1a; 7103 Erg) = 8(1y5—11,). (75)

I stress that the (vanishing on the energy shell) é-functions associated with the divergence of
the integral (525) are absent from the right sides of both (69) and (72), i.e. recalling (61) these
d-functions do not appear in a valid specification of ¥{*. To be precise, if (see § B. 1) as in (46)
one replaces ¥1(E) by ¥1(E’), but leaves E unchanged in G, G{), etc., then @{J’ from (72) and
(73) remains a convergent formula; with these modified @¢}), moreover, the right side of (69)
remains a convergent formula at all real kj, kj, ki off the energy shell (provided one makes
K’ = K, consistent with the fact that (69) is a centre of mass system expression). The formula
(69)is at worst logarithmically divergent off the energy shell when @ (E) is replaced by &5 (E"),
which replacement is not identical with altering £ to E’ in ¥ whlle leaving all the Green
functions unaltered. In other words, the d-functions found in (52) really are non-physical
artefacts of the particular mathematically faulty derivation leading to the formula (52 ) for @{*.

Equation (72) makes understandable the assertion (at the end of §2.2) concerning the
asymptotic behaviour of @{*)(#) at large #. Evidently there are incoming contributions to &{*),
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stemming, for example, from the ¢%i-a2 factor in the @ contribution to &*. To put it
differently, the centre of mass analogue of (445), even when meaningful (i.e. even when two-
particle bound states do not occur), does not specify a &{" which is everywhere outgoing in the
centre of mass system. These annoying plane wave factors e'¥*#-9:8 are not present in @),
however, by virtue of its definition via the centre of mass analogue of (62). Nevertheless, the
quantity @ computed from (69) still does not have the asymptotic behaviour expected of
outgoing ‘truly three-body scattered’ waves. The justification of this assertion is to be found
in §4 below. In other words, despite our hopes, @) defined by the analogue of (62) is not
identical with @{"). Correspondingly, it turns out that the limit at large # of @{*)(#) from the
integrals in (69) is not at all readily determinable. Thus, though for the purpose of computing
w(i—f) they are an improvement on the specifications discussed in § 2.2, the (centre of mass
analogues of ) equations (60), (61) and (67 ¢)—despite appearances—do not provide a specifica-
tion of ¥{* having all properties demanded at the very outset of this section.

I'shall return to the problem of finding a wholly satisfactory specification of ¥{*) in § 3. In the
meantime I note that a satisfactory specification cannot be obtained from any integral equation
derived by direct iteration of (42) (or ofits centre of mass analogue) along the lines of this section,
because such iterations merely make use of identities to replace the right side of (42) by more
complicated expressions. Thus if ¥{P solves (42) it will solve any such iteration of (42). In other
words-—granting the convergence of the integrals therein—all such new integral equations
involving real energy Green functions will suffer from the same difficulty as (42), namely
they will have non-unique solutions for incident ¥; of (20).

For three-particle collisions corresponding to incident ¥; of (20), Faddeev (1961) has shown
that a mathematically unexceptional (in the sense of the first paragraph of this section) specifica-
tion of ¥{™ is furnished by a set of three coupled integral equations for components of @{*), the
so-called Faddeev equations. The Faddeev equations (which clearly are not merely a direct
iteration of (42)) are meaningful at real energies, T i.e. use of the Faddeev equations does avoid
legitimately the awkward limit ¢—>0. On the other hand, the ‘scattered wave’ terms in the
Faddeev equations represent the same scattered part of ¥{* as has been identified with @),
Therefore, the scattered wave terms in the Faddeev equations suffer from the same deficiencies
as were ascribed to @§*) in the penultimate paragraph above. Specifically, even in the centre of
mass system, the Faddeev equations scattered wave terms do not have the asymptotic behaviour
expected of outgoing ‘truly three-body scattered waves’; correspondingly, the asymptotic
behaviour of these terms at large distances is not readily found.

To demonstrate the assertion in the preceding paragraph, it merely is necessary to observe
that the Faddeev equations for the wave function take the form (Faddeev 1961)

DY = — Gyg Vo Yr1 — G Tos[ PP + 0@,
DD = — Gy Vgy Y1 — Gy Ty [P + ‘15‘1)]:} (76)
PO = — GV Y1 — Gy T12[¢’(1) + 0],
where, for A = E +ie, Tip(A) = Viy =V Gia(A) Vi,  etc. (77a)
and PO(A) = — Gp(A) Vas Pi(A), etc. (770)

With respect to (77 a), recall (27 ¢) and (27 f) and associated remarks. In (77 b), ¥ is the solution
to the Lippmann—Schwinger equation (85), so that, for ¥ of (21a),

Bi(2) = BO(A) + DA(L) + DO(2), (78)

1 The key theorems seem to be contained in §§ 7 and 9 of Faddeev (1965), especially theorem 7.1.
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where @; is the quantity defined by (8a). All the Green functions, @, etc. in (76) to (78) are
evaluated at complex energy, but Faddeev has provedf that it is legitimate (other than at
exceptional} energies) to take the limit of (76) as €+ 0, and that the resulting real energy equa-
tions have unique solutions. Taking the limit of (76) as € — 0, therefore, one sees—making use of
(60), (62) and (78)—that

D) = —1lim {Gyp Tog[BD + D] + Gy Ty [BD + D] + Gy Tyy[ DO + O], (79)
e—>0

Equation (79) shows§ that the collection of integrals on the right side of (76) indeed represents
precisely the same scattered part of ¥{*) as has been identified with @),

The set of integral equations (63) for G can be iterated in various ways, thereby yielding new
integral equations. In particular, for complex A = E + i,

G=0Gr—Gp(Vg+Vos+V5) G
= Gp—Gpho[Gra—Gra(Vas +Va1) G] — G Vag[ Gog — Gog (Va1 +25) G
= GpVn[Ga1 — G (Vi + Vo) G, (804)
or G=Gr—GpVyGo—GypVogGos— GpVyy Gy + GpVis Gy (Vas +V3) G
+ Gy Vag Gog(Var +Vip) G+ G Vg Goy (Vi + Vi) G. (800)
At real energies (805) implies (in essentially the same fashion as (65 4) implies (655))
G = G — G4 Vo G — G Vg GEE) — G Ty G
+H{GH V2 G137} (Vo + Via) GO +{G5 Vg G} (Ve + 3) G
+H{GE Va1 G} (Vi + Vig) GO, (80¢)

where it is understood that the integrals in the braces are to be performed first, and where it is
obvious, from §§ A. 1 and A. 2 together with

Gio = Gp—GpliyGip = Gp— GV, G, cte. (81a)

and G = GiP =GPV, G = G — GEP T, G4, etc., (814)
that all integrals in (80¢) are convergent.

Equation (80¢) will prove to be useful in § 3. Equation (805) is Weinberg’s integral equation

for G mentioned earlier in this section, except that Weinberg (1964) prefers to replace G by the
‘completely connected’ quantity]||

C=—[G—Gp+GplyGra+ Gplp Gos + GpVy Gy . (82)
Performing on the Lippmann—Schwinger equations (85) and
V(E +ie) = Viy(E+ie) — Gyp(E+ie) (Vas+Vyy) Wi(E +ie6), etc., , (83)
t See footnote, p. 222. 1 See footnote I, p. 201.
§ Presumably Faddeev’s proofs (Faddeev 1965) mean the order of integration and limit € — 0 can be inter-
changed in (79), but performance of this interchange is unnecessary for the purpose of the present discussion of

Faddeev’s equations.
|| Note my G = (H— E)~! is the negative of Weinberg’s G = (E—H)-1.



224 E. GERJUOY

essentially the same operations as were performed in (80) yields a new (alternative to (42)) real
energy integral equation for ¥{"(E), whose kernel is identical with the kernel in (80¢).
Specifically, recalling (585),

Yy =1 —Gp(Va+Vos +V5) i
= ¢1 - GF Vl2[¢1 —Gyy V12 ¢1 - G12(Vza + Vsl) Wl]
=Gy Vs V1 — Gas Vaa Y1 — Gag (Va1 + V12) Wi
=G Va1 — Gy Vs Y1 — Gy (Vo + Vas) i1, (844)

or, using also (81a),

¥ = lﬁl - G12 V12 ¢1 - st Vza ’ﬁi - Gal V31 ‘:&1
+[Gp Vs Grao(Vas + V1) + GpVas Gos(Var +Via) + GpVay Gy (Via +Vas) ] Wi, (840)

which at real energies E becomes, recalling (60),
PP = i+ O+ O + D5
+{GH V2 G} (Vag +Var) +{G5 Vas G} (Var +V2a)
HCFH Vo G} e+ V) ] #ED,  (840)

where, as in (80¢), the integrals in braces are to be performed first, and where all integrals can
be seen to converge (by arguments such as in appendices A and B). Comparing with (61), one
sees that @§M) is given by the terms involving ¥{" in (84c¢).

In a sense, the integral equation (84 ¢) bears the same relation to the formula for ¥{" implied
by (61) and (67¢) as does (42) to the formula for ¥{*) implied by (11 a) and (44 a); the essential
correctness of this remark will be made more apparent in § 3 below. Neither (80) nor (84) have
been the subject of as rigorous a mathematical investigation as have (Faddeev 1965) the Faddeev
equations, but one may hopet the better-behaved (than in (42)) kernel ensures the uniqueness
of solutions to (84¢). If unique, the solution to (84 ¢) seemingly must be identical with the desired
P{H specified by (8), because one can show that

Yi(E +i€) = —ieG(E +i€) yi(E) (85)

of (84a) (recall (495)) satisfies (844). On the other hand, it does not seem possible to show
directly from (84¢) that solutions to (84 ¢) necessarily satisfy the original Schrodinger equation
(7); to show (7) is satisfied, use of additional real energy integral equations seems required,
e.g. corresponding to (83),

P = PP — GP (Vog+ V) PiP,  ete,, (86)

where ¥} is specified by the formula (58a) plus (72). Equation (86), like (42), can have non-
unique solutions, however, i.e. there is no reason to identify solutions ¥{* to (86) with solutions
¥t to (85); in fact, solutions to (86) need not be solutions to the corresponding integral equation
for P{*) in terms of ¥{J). Conversely, unless one knows (84¢) has a unique solution, there is no
reason to identify solutions ¥{") to (84¢) with solutions to (86). Actually (84¢) is not a direct
iteration of (42)—and therefore conceivably can have unique solutions—only because the
additional integral equations (86) must be used when (84¢) is derived starting from (42) (and
proceeding at real energies as in (84 4) and (84)).

t The kernel in (84¢) does have some undesirable properties however (Newton 1967).
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3. GREEN FUNCTIONS AT LARGE DISTANCES

In this section I shall be concerned primarily with the asymptotic behaviour of the various
(real energy) outgoing Green functions which have been introduced, e.g. GP(r; 1), G5 (r; 1),
etc., as r or ' become infinite, usuallyt along directions v or v in the nine-dimensional configura-
tion space corresponding, in physical space, to all particle distances and all interparticle
distances simultaneously becoming infinite. For a more precise definition of v, I observe that all
points in r = r;, 1y, 5 space can be specified by the following nine coordinates: the six spherical
coordinate angles in ordinary three-dimensional space specifying the directions n,, n,, 1, of
the vectors 1y, 1y, 15; the two ratios &y, {5, where

gaﬂ = rat/rﬂ (87)
and the distance (in nine dimensions) from the origin
r=(+r+rdt =1+ +8G)h (88)

Then the first eight of these coordinates may be said to specify the direction v of the nine-
dimensional vector r = (rq, 1y, 3). In terms of these coordinates the magnitude of the surface
element on the sphere at infinity in the nine-dimensional space, at points along v, is

§2 §2 ,rs
dS = (1 +2€1~g‘]i—§g;>‘% d€21 d€31 dnl dn2 dn3 =78 dv, (89 a)
where of course dn, =sinfd,dg,d¢, (890)

in terms of the usual three-dimensional spherical coordinates 6, ¢, of particle . Along those
special directions v where r, remains finite but, for example, 7, becomes infinite, one can replace
(88) by the corresponding expression involving &;,, {3,. The direction in the centre of mass frame
corresponding to v will be denoted by v; of course in the centre of mass frame only two inde-
pendent three-dimensional vectors, e.g. ¢y, 15, simultaneously become infinite. I also shall
employ v, V,, to denote directions along which r,, remains finite as the sphere at infinity is
approached.

The asymptotic behaviour of the laboratory system free space Green function G&? (as well as
of its centre of mass frame analogue G§”) now can be stated. Specifically, for E > 0, as #—>co
along fixed v, holding ' constant, one sees from (24) that

om.\ % om. \ % e—im3(n—1)/4
: (+)(gpo g« — {271 n
Jim ciprsrs) = () () g

JE\@n-Dr2 ) )
X (»2—7—7;) exp{ipJ/E}exp{—i[kyny .11+ ... +k,n,.7;]} (904)

€x i E . ’ ’
= C,(E) 7%{763/,2 bexp{—i[kmny.Fl+ ... ) (90 )

T In a correctly formulated theory, those very special directions v, = v, (in nine-dimensional configuration
space) corresponding to unbound particles &, £ moving to infinity (in physical space) with identical velocities
(magnitudes and directions) surely must make a negligible contribution to the total three-body elastic scattering
rate. Thus, for our present purposc of computing three-body elastic scattering coefficients @, equation (1), it is
not necessary to examine lim G (r; ') as r — oo along any v, > although knowledge of this limit (along v,g4)
is essential for predicting the rate of two-body bound state u;(r,4) production in the three-body collision.
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where the directions n,, of r, are fixed when v is fixed, and where
2my | T, _
ka=—%2—JE; (¢ =1,...,m). (90¢)
Equation (103 a) shows that the leading term in V,G%’ makes
V,G$D(E) ~ 1JE2m“ Ya GEO(E) = ik,n, G (E), (91)

Also, equations (254d), (87), (88) and (90¢) imply
k . 2m¢x«/E gxl

= 92 q)
« fi2 2 2 2 ’ (
JCrr s B
1 «/(1+§31+...+€,%1) . (92)

The right sides of (924) and (924) depend on v but are independent of the magnitude of r.
Equations (254d) and (90¢) additionally imply

12 k3 ﬁ2k2 12k2

Thus the 8z — 1 variables g, n,, ..., 1, &, ..., §,q specifying the direction v of the 3n-dimensional
vector r = (rq, 'y, ..., ,) can be replaced by the components of the n vectors k;7n4,...,k,n,
subject to the constraint (93). Moreover, (92a) makes £y, £, ..., £, exactly equal to the values
they would have if £, had been defined in terms of the classical speed v, of particle & by

fik, = myv, (¢=1,...,n) (94 a)
and if fa =2 (940)
Uy

(where, of course, v; is supposed = 0). This interpretation (945) of {,; is consistent with its
definition (87) because for short-range forces the classical particle distance 7, should asymptoti-
cally approach v, at times long after the collision.

The other (than free space) Green functions of interest generally are not known in closed form,
so that their asymptotic behaviour at large distances must be computed indirectly, e.g. from
relations such as (65 ). Some qualitative understanding of the behaviour to be expected can be
obtained from examination of the physical operations corresponding to the mathematical opera-
tions lim 00 or lim ' —00. In particular, consider the laboratory system three-particle Green
function GP(r; r'; E) defined by (27). Suppose ry, 7, and 73 each were to be made very large in the
d-functions on the right side of (274d) (recall (23)); more precisely, suppose for each a = 1, 2, 3,
re > L, L some large distance. Then for values of 7, < L the corresponding G (r; r'; E) would
be a non-singular function of r;, r,, r; satisfying the homogeneous equation (7). Consequently
one expects that in the limits 7;—>co, o = 1, 2,3, GP(r; r'; E) becomes proportional to some
¥(r; E) solving (7). In fact, when r,— co along n, keeping the ratios r,/r; = {,; constant—i.e,
when the nine-dimensional vector ' locating the source in (27d) becomes infinite along the
direction v’ specified by the vector k' = (k;ny, kyn;, ksng) subject to (93)—one expects that the
associated ¥(r; E) (obtained from the limit of G(r; #’; E) as #’ becomes infinite along v’) will
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represent a solution of (7), wherein particles 1, 2, 3 are incident from a remote source located
along the direction k’; in other words, ¥(r; E) should represent a solution of (7) wherein
particles 1, 2, 3 are initially incident along the direction — k' = (— ky, — kj, — k3) subject
o (93). Furthermore, because

G(+)(r19 1’2, r3; ria Té, r:;; E) = G(—H(ri’ ré’ ré; 1’1, r2> rs; E): (95)
it also must be true that

lim  GD(ry, vy, g5 1y, 15, 13 E) ~ W (11, 1a, 133 E), (96)
Po—>00 | ng
Tolry= o

where, in (96), ¥ is a solution to (7) (now written in primed variables) in which particles 1, 2, 3
are incident along — k, with k given by (92 4), i.e. in which ¥ is interpretable as a solution to (7)
whose incident incoming part is the plane wave (214), with k; = — k specified by (92 a).

3.1. Specification of wavefunction

In essence, (96) asserts that the asymptotic behaviour of the real energy G™(r; v’ E) at large
distances can provide an alternative (not considered in previous chapters) specification of the
solution to Schrédinger’s equation corresponding to any given incoming plane wave (21a).
This assertion does seem to be generally true, and it has been made the basis for previous work
on the configuration-space formulation of scattering theory. However, the specific results
obtained when (96) is applied to the case of three-body scattering have not been very carefully
examined heretofore; such examination is the subject of the present § 3.1.

I begin by remarking that the expectations of the last paragraph in the preceding section
obviously are explicitly borne out by (905) for the asymptotic behaviour of G{, i.e. for the
asymptotic behaviour of G in the event that there is no scattering because all ¥, = 0. To
determine the relation for G™) analogous to (90 4) in the actual case that V,; & 0 and scattering
occurs, the most obvious starting-point is the equation for G*P in terms of G& implied by (63 d),
namely (as for (63 a) and (65))

GN(E) = GF(E) — GF(E) [Vig + Vo + V3] GH(E), (974)
= G (E) = GO(E) Vg + Vg + Vs ] G (E). (976)
The integrals on the right side of (97) are convergent (see § A. 1). Thus (97 a) legitimately yields

* W ’ ’, — : -+ . ! ’
lim G(+)(1"1, To, T35 71, 1o, T35 E) = lim G(F )(1‘1, Tyy T35 11, Ty 1‘3, )

r—>o|lv r—>oo|lv

— lim | dridrydr; G (r;r"; E)

r—>oo||v
X [Va(11a) +Vas(r3s) +Var (r5) ] GO(r"s 'S ). (98)

Suppose for the moment that interchanging the order of the limiting and integration processes
in (98) is legitimate, i.e. suppose

lim | dr'G(r; 1) [Via(72) +Vas(r5s) + Vo (1) ] GO ("5 1)

r—o||v

dr” im G (r; 1) [Vig(rha) +Vas(15s) +Var (1) 1 GO(r"; 7). (99)

r—>oo||v



228 E. GERJUOY

Then, using (90 ), the relation (98) yields

lim GoO(r, 1, 157 735 ) = SELE S wppoom(ot, o, s ) (1004)
r—oo|lvg
where Wi (1 E) = fdr”lﬁ* 1) [Via(71a) + Vas(758) + Vaa (751) ] GD(r"5 5 E) (1000)
and Yi(r') = exp{i(k;. 1)} = exp{i(Ry. 11+ Ryy . 75+ kyp . 75)} (100¢)
Using (95), the formula (1004) in condensed notation is
P = Y GO Vg 4 Vg + V) U = Y — GO} (1004)

recognizing that for the final plane wave (100¢) the final interaction J; =V} = the total V.
Actually, because the definition of G involves no initially incident wave, the subscript? f could
have been omitted in (100) without inducing any confusion, just as no subscripts were needed
onv, k,, etc. in (90) to (94). For later purposes, however, it is convenient to distinguish the wave
vectors k,; in (21a) from the ‘final’ wave vectors k,; (associated with the direction v; along
which r—o0 in (1004)) appearing in the ‘final *plane wave state (100¢).

Since ¥ { of (100¢) is a plane wave propagating along — ky, (1004) is in good accord with the
expectations at the end of the preceding section. In particular, as (100d) makes clear, the
quantity ¥§{*—to which lim G(r; ') as r— o0 is proportional—is a formal solution of (7), of
the form prescribed by (44 a) together with (114). Unfortunately, as has been thoroughly dis-
cussed in § 2.2, the right side of (100 5) involves (recall (52 ¢)) a non-convergent integral whenever
two-body or three-body bound states can occur. Consequently, the derivation of (100) from (98)
and (99) must be considered unsatisfactory. However, because (100 @) agrees with the physically
sensible expectations at the end of the preceding section, it is reasonable to presume that
a mathematically correct evaluation of lim G*(r; r’) as r—c0 again will lead to (100a), but will
replace (1006) by a mathematically meaningful prescription of ¥{™*. It further may be pre-
sumed that (100 6) fails because (99) need not be true, i.e. because interchanging the order of
integration and limit 7+ oo in (98) need not be legitimate.

The foregoing presumptions are correct, as the remainder of this section shows. Consider, first,
the question of the validity of (99). The condition for (974) to converge, i.e. the condition for
the integral on the left side of (99) to converge, is that—for any fixed r and r'—the contribution
to the integral from the region r” > L” approaches zero as the nine-dimensional distance L”
becomes infinite. This condition, which surely is satisfied (see §A. 1), is much too weak to
guarantee the validity of (99). In effect, (99) is stating that, for any fixed #’, the limiting behaviour
at large r of the integral on the left side of (99) is the same as the limiting behaviour of G{P(r; ")
when 7 - o0 holding r” fixed. Thus a necessary (though very likely not mathematically rigorously
sufficient) condition for (99) to hold is that at sufficiently large r, for any fixed #’, the contribution
to the left side of (99) from the region 7" > 7 be negligible compared to the contribution from the
region r” < r. Recalling (904), this latter condition requires that the contribution from r” > r
approach zero more rapidly than r—* as 00, whereas the aforementioned condition for the
integral on the left side of (99) to converge at large r requires merely that the contribution from
r" > r approach zero as r — 0.

It is shown in § C. 1 that in fact the condition for (99) to hold is not obeyed when two-body or
three-body bound states can occur; to be specific, in this circumstance the contribution to the
left side of (99) from 7" > ris of the same order (namely r—4) as the contribution from " < 7. On

1 See footnote, p. 199.
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the other hand (see § C. 1), equation (99) is valid in the absence of bound states. Similarly, it is
shown in § C. 2 that the centre of mass version of (99), namely

lim | d#"GEP (5 #7) [Va(rhe) +Vas(ris) + Vo (151)] GO(F'5 )

F—>oolly
= [ar" tim GO, #) i) +Vs( i) + Va0 ] G5 ) (101
F—>c0|[V
is invalid when and only when two-body bound states exist. Equation (101) is required to derive
the centre of mass analogues of (100) from the centre of mass analogue of (97 a); failure of (101)
is to be associated with the fact that the centre of mass analogue of (100 4) involves a divergent
integral (namely (525)). If, nevertheless, one employs (101), there results, as in (100),

Cz(E) elrvE Poox i

lim GO(F;#; E) = (t'; E) (102aq)

F—>o0 |9t p%
where, as in (55), P§7% of (102a) s related to W{* of (100) (or more accurately, to ¥{* of
(106), see below) by P (1'; E) = exp{—iK,. Ry TO*(#; E). (1025)

In (1024a), the six-dimensional vector g has three-dimensional projections

(102¢)

with r,,, ¢y, understood to be orthogonal vectors in that subspace—of the nine-dimensional
space spanned by R, r;,, q,—which is independent of, and orthogonal to, R. In other words

(see Appendix F)
2 2 2
(—/];1“3) 120( ﬂaR) q12 = ("%%23) r23@( /2;1%) 923, (1024d)

where the symbol @ denotes vector summation in the six-dimensional space. Moreover (recall
(904), (905)) the two masses appearing in C,(E) are the two effective masses in (102¢), namely
Hyp and fgp.

The significance of the foregoing results is clear, and already has been (briefly) stated in § 1:
The integral in (524) fails to converge, i.e. (562a)—though together with (114) furnishing a
formal solution of (7)—is mathematically meaningless when bound states exist. Therefore, the
divergence of (52 ) when bound states exist must be a signal that any derivation leading to (52 a)
is mathematically invalid under these circumstances. In § 2.2 the mathematical errors in two
such derivations were pinpointed. The first derivation of (524) discussed in § 2.2—namely via
use of the outgoing condition (44 5)—fails because when (44 a) diverges (44 5) is itself meaning-
less; indeed the surface integral (44 4) does not have a limit zero as the radius of the spherical
surface of integration in r-space approaches infinity. The second ‘derivation’ of (52 4) examined
in §2.2, namely via interchange of order of integration and limit e— 0, is seen to be invalid
because one can argue (as was done in the paragraph following (51 4)) that the left and right sides
of (51 a) cannot be equal when the right side of (51 a) fails to converge; in fact, the same argument
implies that when (524) is non-convergent it surely is not identical with the quantity @{Y(E)
defined as the € - 0 limit of @;(£ +i¢). The present section has shown that still a third derivation

15 Vol. 270. A.
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of (52 a)—namely via the interchange (99) of order of integration and limit r - co—fails because
(99) indeed is invalid when bound states exist. Similar assertions pertain to derivations of (52 ).

There remains the question of deriving (100 @) from the limit G (r; r") as r — oo, but without
concomitant introduction of divergent expressions for ¥{7* ie. without making use of
mathematically incorrect manipulations, such as (99). A mathematically acceptable procedure
is suggested by the form of (67 ¢), which is known to converge in the centre of mass system (see
§B. 1) and which, together with (61) and (62), therefore provides an acceptable specification
of PP, as has been discussed in § 2.3. Since (67 ¢) results from iterations of G in the formula (50 a),
it is reasonable to investigate the effect of similar iterations in the integral equation (97 a), which
has been used above to derive (1004). Thus the suggested new starting-point for derivation of
(1004) is the integral equation (80¢) for G,

In actuality, (80¢) does permit a mathematically unobjectionable extraction of lim G®(r; r’)
as r—> oo along directions v = v; corresponding to three-body elastic scattering (wherein (99) fails
and (1005) diverges), i.e. along directions v; such that 7y, 7y, 75, 749, 753, 733 become infinite
together.T The key to the procedure is the fact that the asymptotic behaviour of (80¢) is deter-
mined by the asymptotic behaviour of the integrals G&V, , GS, which are more tractable than
the integrals G%V, , G appearing in (97 a). In particular, one can show (see § D. 1)

Jargrs s By ) 69 (s v )

0 3 A A
= o (e ) (o) [ara [ Q0009 g0, s B V) (s s v,
(103)
where g{37 is defined by (75); g is the corresponding one-particle free-space Green function,
satisfying (75) with Vj, = 0; J, is a Bessel function; and

oM 2 AT

5= 5 R=R) 28 (g gie| (104a)

Also, in the Green functions of (103), the quantity E 12 18 not a constant, as in (74 4), but instead
is defined by E\m — E_& (104 b)
with the understanding that 0 < arg x/E\m < (104¢)

In (103) the presence of the short-range potential V,(7],) guarantees that at sufficiently large
145, for any fixed 7/, the contribution to the right side of (103) from the region r7, > ry, surely is
negligible compared to the contribution from 77, < 7;,. Thus the limiting behaviour of the right
side of (103) at large ry, can be found from the limiting behaviour of g§?(rys; 175) as 71— 00
holding 7, fixed; i.e. interchanging the order of the integration and limiting (as ry,—>00) processes
is legitimate in the integral over r{, on the right side of (103). As a matter of fact, and for the same
reason, the order of integration over rj, and limit 7y, —co also can be interchanged on the left
side of (103). However, just as in the case of the term G%V;, G in (98), when bound states exist
the integration and limiting (as R and ¢;,—>00) processes cannot be interchanged for the
remaining integration variables R” and g7, on the left side of (103) (see § C. 1).

Fortunately, as (103) makes manifest, the integrations over R” and g7, on the left side of (103)
can be performed explicitly, a performance not possible for the corresponding GF V;, G term

n (98). Therefore the asymptotic behaviour of the left side of (103) at large

r= (1‘1, LPY) 1'3) = (R: q12 712)

1 See footnote, p. 225.
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and fixed r’ is legitimately obtained by replacmg J, and g& on the right side of (103) by their
asymptotic forms at large r, holding ' and " constant. Now application of the method of
stationary phase to the resultant integral over & yields the sought-for asymptotic behaviour of
GV, G, One finds (see §D. 1)

ipvE
tim — [aregn M) 69 (s 1) = UEE e B, (1050)
r—>00||vg
where ¢§§})* (7/5 E) = €Xp ( —iKj. R’) ¢xXp ( —iKy. ‘_Hz) ¢(1—£f)* ("123 k12t)> (105 b)
B (7l rar) = f A7l (Pl 743 Erar) Via () exp ( — ikeyay. 1), (1050)

and E,,; now is constant and related to £y by (745). I add that if on the left side of (103) I had
wholly (for integration over R” and qj, as well as ry,) interchanged the order of integration and
limit r-> o0, I again would have obtained (1054), but with the definition

Pl (r'; E) fdf”’#* r") Via(rie) i (r"; 15 ), (1054)

instead of the more correct (1055). When bound states u;(r;,) exist, the integral (1054d) is
divergent, in both the centre of mass and laboratory frames, consistent with the results of § C. 1.
Again (recall the remarks following (75)) non-physical (vanishing on the energy shell) d-func-
tions, absent from the correctly derived (1055), can appear in the formula (1054) deduced via
incorrect mathematical manipulations. Of course, if one decided to reinterpret the right side
of (1054d) as equal to the limit of Gy (E+1ie) Vi, ¥/f when €0, (105d) becomes identical with
(105b) (compare (60), (72) and (73)).

Having derived (105a) to (105¢), they legitimately (see § E. 1) can be directly inserted into
(80¢), thereby making manifest the asymptotic behaviour at large r of the term

{GF V15 GD} (Vg + V) G

in (80¢). In this way, one proves that (1004) indeed is correct, but that (1005) must be
replaced b
P Y P = o + O + O™ + P + P, (106 a)
DL = — GO (Vag +Vay) Pa™ + (Var +Via) Phiat™ + (Via + Vas) P11, (106 b)

where @;)* are defined as in (1055), and where the integrals in (106 5) are made meaningful
by the fact that they surely converge in the centre of mass frame (recall (67¢) and (69)). In view
of §2.3, it is clear that (106) do furnish a meaningful prescription of a solution ¥{~* to
Schrédinger’s equation (7); indeed, Y§7* must coincide with the limit, as ¢ 0, of the solution
¥ (E +1ie€) to the Lippmann—-Schwinger integral equation
Py (E+ic) = YH(E) —E:_g__.iévf Py (E +ie),  (1074)
where, of course, Hy = H; = T of (21¢).
Starting from (97), and (now knowingly naively) interchanging the order of integration and
limit r—o00, as in (99), yields, after using the (now mathematically correctly demonstrated)

100a),
( ) W = fF GO (Vg + Vg + Vay) WE* (1075)

15-2
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as an alternative to (1005) (or (100d)). According to §2.2, (107 b) (compare (42)), the real
energy version of (107 a), does not involve divergent integrals, even when bound states occur.
Correspondingly, one can demonstrate that the interchange of order of integration and limit
r—> 0o is justifiable in (97 b) (see § C. 3), despite the fact that the similar interchange in (97 @) has
been shown to be invalid (§ C. 1). This seemingly paradoxical (because the right sides of (97 a) and
(97b) are equal) conclusion stems from the fact that, according to (98), the r, 7’ element of (97 a)
involves G&)(r; r") GD(r"; r'), whereas the r, 1’ element of (97 b) involves GD(r; r") GGD(r"; 1),
with integration over r” implied. Therefore the interchange (99)—whose legitimacy depends
on the behaviour of the integrand in (98) in the domain r” > r as r + oo holding ' constant and
finite—need not be just as valid as the corresponding interchange in (97 b).

Irrespective of validity, the foregoing derivations—of (1005) from (97a), and of (1075)
from (97 b)—indicate a not altogether apparent relationship between (1075) and (1005), or
equivalently between (42) and the formula for ¥{") implied by (44 a) (together with (11a)).
Equation (95) means that, in the coordinate representation at any rate, G is a symmetric

operator y
GH = G, (108)

where the tilde indicates the transpose. One then sees that (975) is nothing more than the
t f (97
ranspose of (97a), GD = G = [GH) = G5 VGO rans-

= G4 — GOV = Gyb — GHOVGED, (109)

wherein, for the purpose of taking the transpose, it now is convenient to write the right side of

(97 a) in terms of operators only (recall (27f)), i.e. it now is convenient to replace V in (97 a)

by V of (27 ¢) ; with this replacement, the operations in (109) are obviously legitimate, recognizing

from (27¢) that the operator V is diagonal, i.e. symmetric, in the coordinate representation. In

other words—now ignoring the distinction between ¥{" and ¥{*—(42) and (444) are the

results of (naively) taking the limit r -0 in a pair of transposed equations for G‘(r; r').
Similarly, the transpose of (80¢) is

G = G = G4t — Gl Wiy G5 — GI Vo G — G Vo G5+ GO0V + )
X (G35 Via G5+ GOV + Vi) (G Vo G5} + GO Vi + Vi) (G Vo G}, (110)

which of course can be derived directly from the second equality in (63d), via iterations like
those in (804), but substituting always the second equality from each of (634) to (63¢). Now,
on the right side of (110), in the second, third and fourth terms only, use (814) to replace
G4V, GSP by GV, ,GP, and then take the limit r— oo, recalling (1005) and (1054). There
results, in condensed notation

PO* = ik + DG* + B™* + O* + (G5 V1, GID} (Vg + Vi) WE*
+{G Vo G} (Vay + Vi) WE* +{G5DVay G} (Vg +Vog) PE*. (111)

Equations (111) and (1065) are to be compared with (84¢) and (67¢) respectively. One con-
cludes, as in the preceding paragraph, that (84¢) and (67¢) (together with (61)) are the results
of taking the limit r—>co in another (than (97)) pair of transposed equations for G (r; '),
namely (110) and (80¢) respectively. This paragraph clarifies and justifies the opening remark
in the last paragraph of § 2.3.
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3.2. Finite interparticle distances as r—>o0

The previous section has examined the limit of G?(r; r'; E) as r — o0 along directions v = vt
such that all 7,, 7,, become infinite together, these being the directions v; which correspond to
three-body elastic scattering. For many of the proofs (e.g. in the appendices), however, it is
needful also to know the limit of G(r; r'; E) along directions v wherein some 7,, remains finite
as oo is approached, i.e. along directions v, (as defined at the beginning of this section). The
required results in this limit 7— co along v, are collected in this section.

The need for special treatment when some r,, remains finite can be understood from (103).
If r,, remains finite, one cannot employ assuredly—on the right side of (103)—the asymptotic
form of g (1,45 11s) valid at 7,5, > 775, even though Vy,(r7,) is a short-range force. Consequently
the proof (in § D. 1), leading ultimately to (105 a) to (105 ¢), does not necessarily go through when
r,, remains finite. Correspondingly, use of (1004) with (106) replacing (100 5) may not be valid
if any pair r,, remains finite.

The Green function G;, has the expansion (analogous to (53 a))

Gya(#;7'; E+ie) = ?”1(712)“;:('12) 2r(Qas; Qs E—e€5+i€)

+fd’%12u(712§’%12) u* (1193 ’%12) &r(q12; Q12 @52+i€)a (112q)

_ﬁ2 ’ ’
where [%Vglz")l] gr(Qao; Q125 A) = 8(q12— q10) (1120)
_ _ pofa
and &2 = E—Z 1212, (112¢)
74T

with the usual understanding, as, for example, in (255), that
0 < arg (62 +ie) < 2m. (1124d)

The bound state functions «; in (112 4) are defined as in (48); the continuum functions u(r;,; ky,)
satisf
y ikt

hz A
-V, +N ——:Iu t10; ko) = 0. 113a
[ 2/"12 12 12 2/612 ( 12 12) ( )

The sets u; and u(ky,) together presumably form a complete orthonomal set,

X ui(112) uff (112) +fd’%12”('12§ ’%12) u*(r1e; ’212) = (11— 1) (1135)
J

A convenient choice of u(k,,) consistent with (1134) is

7~ 3 5 ’ ’ ﬁ2’é2 ' b ’
u(r1g; Ryp) = (2m)7% [CXP {ikeys. 115} —fdrlz a4 (’12? 125 ‘Qﬁ) Via(11s) expiiky,. "12}] , (113¢)

where g{f? is the same Green function as in (75).

In the discrete sum over j in (112a), the limit as e 0 is obvious, i.e. in the discrete terms
gy becomes g4 when Gy, becomes G{J’. Therefore, for energies £ > 0, (112) and (90) imply
that, provided bound states u;(ry,) actually exist, Gi3’ is of order ¢3! as 7— o along directions ¥,
such that r;, remains finite; this result is to be contrasted with the asymptotic behaviour
~ q3°? (= p~ for these directions v,,) which would be inferred, incorrectly, to be sure, from, for
example, the centre of mass version of (105a), or (equivalently) from (102a) in the case
Vs = Vo; = 0. It has been shown elsewhere (Gerjuoy 1958 @) that along these directions v;, the
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outgoing probability current is to be computed from the projections of @{* on u(r,,). Corre-
spondingly, when bound states #;(ry,) exist, the useful version of the asymptotic behaviour of
G{$ along directions 9, is

lim drypuf (ryp) G (7375 E) = gz X i Kigy g1 uj' (r1s) exp{—iKyp V1. G}, (114 0)

Q15> 0 || D1t 2Tl'ﬁ2 T12
72 —
Where %K%Zj +€j = E. (114: b)

Equations (114 a) and (654) then imply

iK.
MH3r € 12i712 ()%

lim dry,uff (1) GO(F; 73 E ' FE 1154
tim [ dngut () G075 B) = B wgr s E),  (usa)
Y_j(fj)f*('-"5E) = uj* (r15) exp{—1iKyp V1o G0}
fdr'{z dqi, G(+)( )[V23('23) + Vo (r3) 1 45 (172) exp{_iKlzj Vit - Qo)
(1155)

Equation (1155) for P{5;*(#) has essentially the same form as does (100 4) for ¥{~*(r’), taking
into account the differences between the subspaces (defined by v; as opposed to v,4), wherein
the limits are being evaluated. However, (115 ), unlike (1004) or its centre of mass version, is
valid, and does not require modification along the lines of (106), because the right side of (115 4)
is convergent by virtue of the fact that the V}, interaction term has been eliminated from (115 5).
The laboratory version of (1155) fails to converge only when three-body bound states exist
(see §A. 5).

Because the continuum terms in (112 a), like the discrete terms, involve merely a one-particle
three dimensional Green function gz, (114) might be thought to imply that—even when no
bound states exist—G\3’ is of order ¢! as 7— o0 along directions ¥;,. This conclusion would be
incorrect, however; in the absence of bound states G{3’ must behave asymptotically like an
outgoing six-dimensional wave along all directions in #-space, i.e. even along v,, must be pro-
portional to the same eV Z/p% factor (displayed explicitly in (102a) for GP) as is found for
G&) from (90). In fact, an explicit calculation (see § D. 2) starting from (112 a) shows that in the
absence of bound states

tim G (r; 75 ) = (2 Cy(E) SR I (1,50 (15 ) exp (i Ko ) (1160)

Qo] [zt
where Co(E) and p are defined as in (102), with the understanding that in (1164), because
¢4 — o0 holding ry, finite,

— (2 3
7= () 0 (1162)
2 N\ 1
and Ky = ( ”;igE)? (116)
plus, of course, Ky = Kj 919. The functions u(ry,; 0), u*(r1,; 0) in (116 a) are given by (113¢),

putting &, = 0.

Equations (116) are not quite identical with the result of letting r;,/¢,,— 0 in the centre of mass
analogue of (105). To be precise, comparing (105¢) and (113¢), and remembering (814), one
sees that (105) at k5 = O are identical with (116) except that (116 4) contains an extra factor
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(2m)¥ u(ry; 0), which factor approaches unity as r,, — 0 (it is necessary to realize that as E;,— 0,
but only in this limit,
lim gi)(Eyp) = lim [gfi (Eyp)]* = lim gly) (), (1164)

Ejy—>© E\;—>0 B>
because at £, = 0, but only at £, = 0, g,,(FE;, +1i€) is separated from g,,(E;, —i€) by only an
infinitesimal path around the cut running along positive real E;, from E;, = 0 to infinity).
Equation (116 @) explicitly demonstrates that—even when there are no bound states—equations
(105) are not strictly valid for directions v; = v, corresponding to having ¢,, and R — oo keeping
74, finite. Of course, as explained in the second paragraph of this section, there is no reason to
expect that (105) remain valid when r;, is kept finite.

On the other hand, questions can be raised concerning the correctness of (1164) (see §D. 2),
so I do not want to insist that (105) are in error along v = v,,, or that (116 @) is exact. Evidently,
results and remarks similar to the foregoing must pertain to the asymptotic behaviour of G™H(r; ')
or GM(F;#) as the unprimed coordinates become infinite along v,y or 94 respectively. For
all purposes of this work, however, it is sufficient to recognize that when no bound states exist
lim G (r; 1) must be of order €*VZ/p4, and lim G (#;#') must be of order ¢?Y 7[5t The above
simple and hardly challengeable assertion concerning the asymptotic behaviour of G suffices
to make inconsequential (for the purposes of this work) any possible differences, in the absence
of bound states, between the actual behaviour of G (r; r') along v,s and the behaviour inferred
from (1004) supplemented by (106); correspondingly, in the absence of bound states any
inaccuracies in (102a) along directions V¢ = 9,,, are inconsequential for the purposes of the
present investigation. In particular, it can be seen that all arguments in the appendices based on
the forms of (100 4) or (102 a) remain valid (cf., for example, § A. 5), and that the computations
of outgoing current flow in §4 below remain correct (see the remarks in the paragraph
immediately preceding §4.1).

4, TRANSITION AMPLITUDES

The previous chapter has discussed the asymptotic behaviour of the outgoing Green function
G®(r; ') at large r. This chapter examines the limit of ¥{¥)(r) as r—o0, and interprets the
reaction rates inferred therefrom, concentrating primarily on directions v corresponding to
three-body elastic scattering, i.e. on directions v for which no 7, remains finite as 7 - co. In this
connexion suppose the scattered part @{7) of ¥{* really were everywhere outgoing at infinity in
the laboratory system. Then, according to arguments which have been given elsewhere (Gerjuoy
1958a), in the laboratory system the outward flow of probability current (associated with @{)
across the sphere at infinity should be

7 = % f dS. W[OH*, ¢, (1174)

where W is defined as in (45 4); and where the surface element d.§ is perpendicular to v and has
magnitude dS = r8dv given by (89). As was mentioned in § 1, in the time-independent configura-
tion space formulation of scattering theory, reaction coeflicients are computed from the proba-
bility current at infinity. Thus, to be sure that computation of the three-body elastic scattering
rate does not involve divergent expressions, it is necessary that along most directions v

W%, 2] ~ <, (1175)
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or even smaller. If |W| decreases more slowly than 1/78, the integrand in the surface integral
(117 a) at infinity is not bounded. Correspondingly, the integral for & diverges as r — co, unless
(at fixed large r) the angular integrations over dv vanish; of course, the integrations over dv in
(117a) could not vanish if @{") really were everywhere outgoing at infinity, since then
(i£)~1d.S . W always would have the same sign.

Equation (117 ) would hold if &{7)(r; E) behaved asymptotically at large r like G4 (r; 1'; E)
(recall (90)), i.e. if ®{P)(r; E) at large r represented three particles moving freely (as if under no
forces) outwards from the laboratory system origin and from each other. But (555) shows the
centre of mass motion associated with @{") is that of a plane wave, not an outgoing spherical
wave; correspondingly, |W/| actually decreases no more rapidly than 75, and the integrand in
(117a) does turn out to be divergent (see §4.1.1). For three-particle collisions involving two
incident bodies only, as, for example, reactions (17 5) and (17 ¢), this divergence of (117 a) is not
a cause for serious concern, however, because: (i) the divergence is interpretable physically, and
(more importantly) (ii) manipulations with divergent quantities can be wholly avoided by
computing the centre of mass frame probability current flow

7F-o f d5 . W[BH*, B, (118)

In particular, in the cited two-body reactions (174) and (17¢), when #-—>co along directions
9 corresponding to break-up into three particles, @{*)(7;E) behaves (Nuttall 1967) like

G\ (7.7 E T 1 =
GW (#;#; L), and |W [@H%, 8| ~ 1/, (1185)

which suffices to keep finite the total scattered current flow across the sphere at infinite 7, whose
surface element dS'is of order 75,

On the other hand, for collisions induced by the incident wave (21a), wherein all three
particles are initially free, @{")(F;E) does not behave asymptotically like G3(7;#;E);
correspondingly, (1185) does not hold and use of (118a) generally does not avoid infinite
probability current flows. In fact, (61), (68) and (72) make it obvious that &{1 generated by (20)
contains contributions @37, @), D) possessing plane wave factors. For such terms, (118 4) fails
(see §4.1.2) because, whereas lim G4 (#; #'; E) as - o0 along v is of order 752 (recall (90) and
(92)), the corresponding limit of &L} (F; E) is of order 7a; = 71 along directions ¥ for which Toup
becomes infinite with 7. These considerations indicate that at the very least &3, @) and &Y
must be subtracted from ®{" before there can be any hope of computing—via (118 a), but now
using @§*) from (62) in place of & F'—non-diverging centre of mass frame scattered current flows.

Unfortunately (as particularly § 4.1.3 will show), use of @i instead of M) in (118 a) still does
not eliminate all sources of divergent . To put it differently, it will be shown in § 4.1.3 that—
for short-range forces and directions ¥ corresponding to three-body elastic scattering—®@§H) (F; E)
still is not identical with that part of @ (; E) which as #— o0 along % behaves like the corre-
sponding limit of G{(#;#; E) holding # constant; it is this (behaving like G%) part of @+
which in § 1 was termed its ‘truly three-body’ part &), Note that the foregoing definition of
@HH) is not uniquely prescriptive because it permits adding to (or subtracting from) @+ any
part of @+ which at infinity is negligible compared to p—52; this indeterminateness in @) is
inconsequential, however, since termsnegligible compared to 5~52 make no contribution to (1184)
(when @) replaces @{1). The definition does rule out of @) any terms which at infinity in the
centre of mass frame decrease less rapidly than p—%2, or which are not everywhere outgoing (i.e.
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which contain contributions proportional to e~V Z instead of ¢!”VZ), It is understood, of course,
that for our present purposes—namely, determining elastic scattering coeflicients—nothing need
be said nor has been said about the permitted behaviour of ®{" along directions ¥ = 9,, corre-
sponding to keeping 7, finite as # -0, As a matter of fact, recombination reactions, e.g. (17 a),
are ‘truly three-body’; moreover, when, for example, particle 1 can be bound to 2,

. =) . _ elK2ig1e
lim  D7(r4,5 Que; E) ~ 2 a3(V10) us(112) ) (119)
i

1> 0|93 912

where ay(9,,) is a number, and where K,,; is defined by (114 5). At infinite ¢,,, the right side of
(119) is proportional to p~ (recall (116 5)). However, because (119) dominates p—52 only on that
subspace of d§ corresponding to finite 7,,, the total contribution of (119) to % of (1184) remains
finite (and can be taken to represent the flow of probability current corresponding to reactions
such as (17a)).
4.1. Divergences in transition amplitudes

This section will show that (in our configuration space formulation) the divergences
encountered in transition amplitudes typically are associated with failure to recognize the
implications of the above introduction to this chapter. More specifically, this section provides
further illustrations of the principle that the d-functions (even if physically interpretable)
encountered in the configuration space formulation of scattering theory are associated with
improper mathematical manipulations. The é-functions considered in this section are those
appearing in transition amplitudes; it will be seen that these é-functions generally are a con-
sequence of an invalid interchange of order of integration and limit r— o0 in integrals for &),
D), D), etc., of the sort discussed in § 3.1 in connexion with integrals for G (e.g. (99)). Failure
to recognize that such interchange of order of integration and limit  —co is invalid typically leads
to incorrect assumptions about the asymptotic behaviour of the relevant scattered parts (e.g. of
@(1), and thus to incorrect computations of the scattered current flow (e.g. of Z via (1174)). In
particular, §4.1.3 will show that assuming &§P)(#; E) behaves like G(#;#; E) leads to a
divergent transition amplitude, from which follows the (independently verifiable, see § E. 3)
conclusion that @§*) indeed cannot be identical with @4+,

4.1.1, Divergences associated with momentum conservation

With the introduction to this chapter in mind, consider the asymptotic behaviour of the
integral (52 a), which is the simplest expression we have found for the scattered part of ¥{*) when
the incident wave is (21a), representing three initially free particles. As has been discussed (in
§2.2), the integral (52 a) is divergent when two-body or three-body bound states can occur, so
that (52 a) is not expected to be a generally useful starting point for determining the asymptotic
behaviour of &P, Suppose, nevertheless, (100 @) (which is valid providing ¥{*is given by (106))
is employed in (524) to infer
PVE

P

lim M (r) = — Cy(E)

r—>00||ve

T(ki——> kf)’ (1200)
where the laboratory system transition amplitude

T(ky—>ke) = W{O* Vg Efdf"l’%‘)*(f’) (V1a(712) +Vas(r2s) +Vau(r3)] a(r),  (1200)
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and where the dependences of ¥y and ¥{* on k; and k¢ are specified by (21a) and (100¢),
together with (106). Then use of (1204) in (117 a), together with (87) to (92), yields

F = fdlczf dkg; dnyy dng, dng, k3, £% k”@%r)@% | T'(ki— ky) |2
Efw(i»f), (1214q)
wherein the (unphysical, see below) laboratory system three-body scattering coefficient
w(i->T) = w(ki—> ky) = 27“@11—)9 | T(ky—> ke) |28 (Ee — Ey) by dky dky.  (1215)

The energy-conserving 6 (E; — Ey) factor is employed in (1215) merely as an artifice, to put (1215)
into a simple form consistent with the results of time-dependent scattering theory and the
‘golden rule’; the directly derived integrand of (121 a) contains no § (E; — E;), and the specifica-
tion of ¥{* in (120 ) automatically makes E; = E;. The laboratory frame quantity w in (121 a)
and (121 ) should be related to the observed scattering rate @, defined beneath (2), by (see § 4.2)
W(ki— ky) = Ny Ny Nyw(k;— k). (121¢)
The form of (120 @) seems consistent with the result (117 §) required for finite laboratory frame
probability current flow # from (117 a). Actually & is infinite, however (as expected from the
introduction to this chapter), because of the customary total momentum-conserving d-function
factor occurring in laboratory system transition amplitudes. Specifically, employing (334) and
(1025), the integral (1205) reduces to

T(k,— ky) = (210)3 (K¢ — K)) f AP B (7 By)

X [Via(r12) +Vas(ras) +Var(r5)1 1 (7' E), (122)
which, when inserted into (121 a), causes & to diverge by virtue of the [§(K; — K;)]? factor under
the integrand. Note that & could remain finite if merely §(K;—K;) (rather than its square)
appeared in the integrand of (121 a); correspondingly, w from (1216) can be made physically
meaningful only by somehow reinterpreting (and thus eliminating) one of the & (K; — K;) factors
in |T(ky— ky)|2

Of course, the fact that T'(k;— k) contains a momentum-conserving d-function factor is
gratifying on physical grounds. Nevertheless, from the standpoint of this work’s configuration
space formulation of scattering theory, this same fact must be regarded as a signal that the
computation of the laboratory system transition amplitude hasinvolved unjustified mathematical
manipulations. In particular, the assertion in (120a) that lim @{P(r) is ~ e?V#|pt is prima facie
incorrect by virtue of (55 4), as the introduction to this chapter has discussed. Moreover, to derive
the pair of equations (120) from (52 q) it is necessary to assume (compare (99))

linlllv dr'GDO(r; ") V(') Yri(r') = dr’ linlllv GH(rs ") V(r") yu(r'). (123)
r—o0||V¢ r—>w ||V
Thus the interchange of order of integration and limit r —co in (123) also must be incorrect, as
can be directly verified by comparing (as in the case of (99)) the contributions to the left side
of (123) from the regions ' < rand r’ > r as r—o0 (see § C. 4).

Similar remarks (see § C. 4) pertain to the result for T'(k; — k) if; still for yr; of (21 a), equations
(90) together with interchange of order of integration and limit r — co are employed in (42); in
this fashion, one again obtains (120 a), but now with

T(ki— ke) = f VWD Efdf' P (1) Malrie) +Vas(ras) +Vau(rs) | PiP(1). (1240)
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Asin (122), equation (124 a) reduces to
T (ki ki) = (2")33(Kf—Ki)de'W(7';Ef) [Via(r1e) +Vas(ra) +Vau (r52) ] PO (#'5 By). (1245)

The integral (124 a) has a § (K; — K) factor even though the integral in (42) is convergent at real
energies (recall § 2.2). Similarly, the integral (120 ) contains a §(K; — K;) factor whether or not
(52 a) diverges, i.e. whether or not two-body or three-body bound states exist. On the other
hand, it is true (see § 4.1.4 below) that bound states produce additional divergences in (1205),
as well as in (124 4).

4.1.2. Divergences associated with two-body scattering

The preceding subsection implies that if we wish to calculate the reaction coefficient by means
which are mathematically valid and do not introduce divergent expressions, we must not make
use of the expression (117 a) for the laboratory system probability current flow. Let us examine,
therefore, the possibility of calculating the probability current flow in the centre of mass system,
via (118a). In particular, consider the asymptotic behaviour of the integral (52 4), which is the
centre of mass analogue of (52a). Then, as in §4.1.1, ignoring the bound state complications
which make (525) a dubious starting-point, use in (52 ) of the valid set of equations (102) and
(106), together with

. Eilﬁw d#¥ GD(#; ) V(i) Yi(i') = di"y_l)i:rhvféﬁ)(i‘; ) V(#) () (125)

yields ) iimf BD(i') = — Cy(E) 9%? T (ky— ki), (126 0)
where T (ki ki) = PV,

= fdi'W%‘)*(i") (Vaa(r1e) + Vag(13s) +Var(r30) 1 11(7), (1260)

and where C,(E) and g are defined as in (102). Correspondingly, using (126 4) in (118a4), the
centre of mass analogues of (1214) and (1215) are found to be

F Efw(i—>f), (127a)
. 2 1 — ~ =
(i>f) = (k> ke) =5 (el T (ki k) [20(Br = Fi) ey K (1275)
2 1 -
= %(—2?6'6' T (ki ki) |? 0(Er— Ey) 8 (Ko — Ki) dky dky dky, — (1270)

where @ is the reaction coefficient introduced in equations (1) and (2).

In (127) and (127¢), as in (121 ), the d-functions merely are convenient artifices for putting
the final result into simple form; moreover, the specification of P{* does not involve K;, and
automatically makes E; = Ej. Therefore, if T (k,— k;) contains no divergences, # and i given
by (127) will be finite and well defined. On the other hand, if 7" (k> k;) contains terms propor-
tional to d-functions whose arguments can vanish on the energy-momentum shell E; = E; and
K: = K;, then # will diverge because the integrand of (127 a) will contain terms proportional
to the squares of d-functions; correspondingly, @ from (1275) or (127¢) will not be physically
meaningful unless the singular terms in the integrand somehow can be reinterpreted so as to
eliminate all powers of d-functions higher than the first. Note that a factor 6(K:—K;) in
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T' (k> ky) actually would make the integrand of (127 ¢) proportional to [ (K; — K;)]3. However,
T (ky—> ks) is independent of K; or Kj; in fact, (1204) and (126 5) immediately imply

T(ki— ki) = (2)%0 (K — Ki) T (ki — ky), (128)
consistent with the result (122) previously deduced.

As was mentioned in the introduction to this chapter, this subsection’s procedure—namely
calculating the probability current flow in the centre of mass system—is mathematically valid
for two-body reactions, but not for collisions induced by the incident wave (21a). To put it
differently, 7T (ki—> k;) from (1265) generally is free from (on the energy-momentum shell)
divergences for reactions produced by two-body collisions, even when these collisions cause
break-up (e.g. ionization) for one of the incident bodies;t for the elastic scattering of three
initially free particles, on the other hand, it is well known (Watson & Nuttall 1967; Weinberg
1964) that T (k;—> ky) contains é-functions—associated with purely two-body single scattering—
whose arguments can vanish on the energy-momentum shell. In particular, consider the contri-
bution to (126 ) from, for example, the first two terms in the centre of mass analogue of (106 a),
which validly specifies P{*. In other words, recalling (584) and (72), replace P{*(#) in
(1265) by

P (F) + P () = Pd*(7)
= exp{—iKiy. qio} [exp { —ik1ar . 11} + Plar™ (¥1a; Rrar) ]

= exp{—iKyy . qio} 47" (1105 R1ar), (1294)
where u{*(r,) (which does not contain the (21)~% normalization factor attached to u(r,,) of
113)) obviously solves —52 22
() y [“ﬁ‘V%z*‘Vm(ﬁz)_fi@] ul*(1ry) = 0, (1299)
2t19 2419

and represents scattering of particles 1 and 2 in their own centre of mass system when (in that
centre of mass system) the incident plane wave is e~2t-"12. Then one sees that there is a contribu-
tion Ty,(ki— ki) to T (kyi— ky), from the V}, interaction in (1265), of magnitude

Pt* Va1 = fdriz dqisexp { —iKysr - qio} 46" (1105 Ryar) Via(11:)
% exp {i(Kyyi . Q1o+ Ry - 115)},  (1304)
= (2m)3 0 (Kygr — Ki3) fdrlz ulT* (1195 Ryag) Via(110)

x exp {ikyy; . 115}, (1300)
= (21)% 0 (Kyor — Kyo1) t1a(Rao1 > Raar), (130¢)
where f1,(Ryg — Ryg) 1s the transition amplitude representing scattering of the completely
isolated pair of particles 1 and 2 in their own centre of mass system. Thus, for incident waves
(21a), the quantities 7 (k;— ki) and T'(k; — ki), supposedly representing three-body transi-
tion amplitudes in the centre of mass and laboratory frames respectively, actually contain
a contribution (130¢) representing purely two-body elastic scattering—of particles 1 and 2
without interaction with 3; according to the remarks following (29), the d-function in (130¢)
guarantees that the laboratory velocity of the non-interacting particle 3 indeed remains
unaltered. Similar (to (130¢)) contributions to 7" (ky— ki), with similar interpretations, result

of course from the other interactions in (1265).

t If, for example, particle 3 is incident on a bound state u;(7y,), ¥; is proportional to u(,,), while V] = V—T,,
so that (126 ) surely converges for short-range forces. Of course, to be wholly mathematically correct for reactions
causing break-up of the initial u(y,), ¥{™* in (1265) must be correctly prescribed, e.g. via the centre of mass
analogues of (106).
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Recalling the discussion in § 4.1.1, the divergent (on the energy-momentum shell) 6 (K, — K1)
factor in (130¢) is a signal that (126) were derived using improper mathematical manipulations.
Correspondingly, the interchange of order of integration and limit 7— oo in (125) must be wrong,
as can be directly verified (see § C. 4). Nevertheless, as has just been seen—and as in the case of
the momentum-conserving J¢(K;—K;) factor discussed in the preceding subsection—the
divergent term (130¢) is readily interpretable physically. I point out that the above conclusion—
namely that 7 (k;—k;) contains contributions representing a single purely two-body
scattering—was based solely on the form of the contribution (130¢) to (126 4). But 126 5) has
been derived from the admittedly not always valid formula (52 4) for @&{*; it would have been
preferable to obtain 7 (k;—> ks) from an always legitimate formula for @{*), i.e. from (69)
supplemented by the centre of mass version of (61). However, starting in this latter fashion, it is
immediately obvious that T (ky—> k) defined as in (126 @) must contain a contribution, stemming
from the @{J term in @{1), representing the single purely two-body scattering of 1 and 2. Further-
more, (68) and (72) show explicitly that the assertion lim &P (r) ~ ¢?VE/gk (in (1264)) is
prima facie incorrect, and that a ¢ (K, — K,) factor in the @ contribution to 7T (ki—> ki) is
to be expected. Alternatively, if, ignoring the accurate result (72) for @{3), one starts from the
admittedly not always correct (cf. (60) or (1054d)) analogue of (525)

@ﬁth>=—fdr@ﬁ@ﬂwzxﬁaimwx (1310)

and then employs the analogue of (102a) (i.e. (105), in effect) after performing the interchange
analogous to (125), one finds
lim &((7) = —Cy(E)

T—>00||9g

B
5 P * Vie ¥y (1310)

el?v
p

Comparing with (130a), one sees that the contribution to 7 (k;—> ky) stemming from the &{})
term in @{* is precisely the contribution (130¢) previously obtained and interpreted. Moreover
the contribution to the integral (131«) from 7 > 7 is not negligible compared to p—%2 ~ 752 (see
§C. 4), so that the interchange of order of integration and limit #—>00 in (1314) really is
unjustified.

The foregoing discussion (especially in the last paragraph) is relevant also to the expression
for T (ki ks) obtained from (unjustified) employment of (90) in the centre of mass system
version of (42); this procedure again yields (126 @), but with

T (ki ki) = Y NP Efdf’z?%" (%) [Ma(112) +Vas(r2s) +Var(r5) 1 TEV(F).  (1310)

Equations (124) and (131¢) areconsistentwith (128). Replacing P{Pin (181¢) by P = ¥, + &P,
and using the 1}, interaction, once more yields the two-body contribution (130¢) to T (ki —> k).

If the fact that T (ky— ki) given by (131¢) is divergent is overlooked, and if (524) or the
centre of mass analogue of (51¢) is employed in (131¢) despite the fact that (524) and (51¢) fail
when two-body bound states exist, then

T(ki—>ks) = YFT(E) ¥y = (| T(E) |i), (1314)
where T(E) is the operator defined by the centre of mass analogue of (5). Equation (1314d) (but
with E; replacing Ey) also follows from substituting—with similar inattention to questions of
mathematical validity—the centre of mass analogue of (1005) in (1265). Although (131d) is
quite commonly employed, the foregoing remarks and the entire contents of this §4.1 make it
apparent that—for three independently incident particles described by v of (214)—(131d)
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implies a connexion between the matrix element (f| T(E) |i) and the asymptotic behaviour of
@P)(7) at large # which has no real mathematical justification (recall (126 ) and its difficulties).
On the other hand, for the transition amplitude #,,(Rys = Ry5;) of (130¢) it is mathematically
justifiable to write

bia(Rigi — Rygp) = Jdru dripexp{—ikyy. T1o} £12(T12; 103 Fra) eXp {ikyg. 10}

= (fl t1o(Epp |1>, (131e)

where k3, = K3y = k3, satisfying (74 0); (f|t15(Fy,) |1) is the limit of (f] £y,(F;,+1€) |i) as e—> 0;

t1o(T19; T125 A) = Via(11a) 0 (r1a— 112) —Via(F12) G12(T125 7125 A) Via(112), (131f)

and g,, is the two-particle Green function, defined as in (75). Moreover, it really is true that as
r1,— 00 along the direction of R,y = ka4,

. ) 1 2/"12 eikarse .
lim @53 (15 Ryay) = i 2 7 < |t12 E,) |1>> (131g)

T19—> 0 | [r1at

where ¢{3 is defined by (73) and (74). Similarly, it is justified to write

¢§_§)(k121) = _g12 Ve = —[g(+) +)V12g§_2H] Vie 1o
= —gF)[Vlz"Vmglz Vil ¥rion = — +)t12(E12) V1ot (1314)

as well as Vol + 18] = Via[1 — g1 V35] Vi = t10(Er) Yram- (1317)

Equation (131z) is the two-particle analogue of the not necessarily valid (51¢). Note that the
first term on the right side of (131f), which term has been denoted by ¥y, in (1314), is not
identical with Vi,(r;r’) of (77a) (recall (27¢)); V,, of (77 a) operates in the nine-dimensional
three-particle configuration space, whereas V,, of (131 4) operates in only a three-dimensional
space.

4.1.3. Divergences after subtraction of two-body terms

The results of the preceding subsection imply that—whether or not divergent, i.e. whether or
not bound states occur—the integrals (52) are an unsuitable starting-point for mathematically
unobjectionable derivations of formal expressions for the three-body amplitudes 7'(k;— k;) or
T (k;— ky). Similarly, (42) and its centre of mass version, though generally convergent whether
or not bound states exist, also have been found to be mathematically unsuitable starting-points
for deriving matrix elements of T or T. To have any hope of deriving non-divergent expressions
for (f|T|i), the purely two-body single scattering parts of &) apparently must be subtracted
away at the very outset, before taking the limit r — oo (as foreshadowed in the introduction to
this chapter). Therefore, I now shall examine the contributions to T'(k;— ks) and T (ki— ki)
obtained from the asymptotic behaviour of @§" and &{™), specified by (67 ¢) and (69) respectively.
In any event, the starting-point (69), taken together with (72) and the centre-of-mass version of
(61), has the virtue that it provides a specification of @{")() free from divergences or ambiguities.

In (69), assume that

lim | dFGO(F; ) V(1) B (F) = [ A Lim GO #) Vi (ry) BHF).  (182)

7—o0||9g r—>w||vp
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Then in the by now familiar fashion, there results

. _ _ epvE _
lim @f““)(i') = —C,(£) ﬁ% Ts(ki— ky), (133a)
7—>0||9t

To(ky—> ky) = fdf’ﬂ“)*(f’) [(Vas +Van) B ()
+ (Vo + Vi) PE(F') + (Vo + Vag) P (7)]. (1330)

Similarly, interchanging order of integration and limit r — oo in (67 ¢) yields

. elrvVE
lim @&§N(r) = — Cy(E) o Ts(ki— ky), (134 q)
r—>co ||Vt
where 7 turns out to obey
Ts(ky— k) = (2m)38(Ki—Ky) T (ki k), (1345)

consistent with (128).
In view of the preceding two subsections, the momentum-conserving 6 (K — Kj) in T5(k;— k)

is to be expected from (68), and requires no further discussion. On the other hand, there are no

immediately obvious reasons why the asymptotic behaviour of &§* from (69) should be incon-

sistent with (133 a). Nevertheless, the integral (1335) also is divergent. In fact (see §B. 2), the

right side of (133 5) contains contributions proportional to

my

Kyt
231 + my

K
rm,

8(1:121—

) (1354a)

and cyclic permutations thereof. Using (29) and the relation K; = Kj. the expression (1354)

takes the form
O (kygy — | Ragi + Ryg — Ryy]), (1350)

wherein the argument of the d-function obviously can be zero on the energy-momentum shell.
Consequently the contribution to (133 5) made by (135 4), when squared in (127) after replacing
T by T#, again causes @ and Z to diverge, although the divergence is of lower order with the
one-dimensional d-function (1354) than with the three-dimensional d-function contribution
(130(}) to T(k1—> kf)

Judging by our earlier experience in this chapter, therefore, the assertion in (1334) that
lim & is ~ e?VZ[pE must be incorrect. In fact, it is shown in § E. 3 that there are contributions
to @ (#) behaving like p~2 as p - co. Correspondingly (see § E. 2) it can be demonstrated that
the contribution to the integral on the left side of (132) from the region 7 > 7 is non-negligible
compared to p~%2. Thus (as the result of §E.3 confirms), the subtraction, of terms from
&M, yielding @5 is not yet sufficient to permit interchange of order of integration and limit
f—>coin (132), although the 7' > 7 contribution to the left side of (132) is smaller than the corre-
sponding contribution to the left side of (125) (compare the results of §§ E. 2, E. 3 and C. 4). It
is additionally noteworthy that these results (of §§ E.2 and E. 3) hold whether or not bound
states exist.

Moreover, still consistent with our previous experience, the result (1354) is physically
interpretable. The particular J-function (1354) arises in the contribution to (1335) made by
the term P{*V,, &{3); more specifically (see § B. 2), (1354) is obtained from the

Ui+ Bl = Pig)* (136)
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partof Z{* in the aforementioned term. But one sees—using (51), (60), (77 a) and (81), together
with the Lippmann-Schwinger equation for ¥§3)* analogous to (107)—that

Vot Vas D13 = — Plad™ Vasl lin(} Gro(E+i€) Via ¥} (1374)
= —lim V5% V3 Gip(E+ie) Vo Yy
e—0
= —lim Py (E+ie) Vyy Gp(E +i6) Tip(E+i€) ¥y
e—0

= —lim Y Vo Goa(E + 1) Tya (E+ie) ¥y
e—>0

= —~1in31,7§" Tos(E+i6) Gp(E+i6) Too(E+i€) ¥y, (1370)
where, for our present purely interpretative purposes, interchange of order of integration and
limit ¢~ 0 in (137 ) is permissible. The matrix element (137 4) is explicitly discussed on p. 59 of
Watson & Nuttall (1967), and obviously is representable by a double scattering diagram (see
also § 5.3 below). To be precise, (137 4) corresponds to a diagram wherein there is first a purely
two-body scattering of particles 1 and 2 (the factor T},), followed by a period of free propagation
(the factor G) and then a second final purely two-body scattering of particles 2 and 3.

The preceding two paragraphs justify the conclusion that the é-functions (135) arise from
contributions to @ (#) which, because they arise from two successive purely two-body elastic
scatterings, cannot (and do not) behave like truly three-body scattered waves at large # This
conclusion is reinforced by the fact that the vanishing of the argument of the d-function (135 5)
really does guarantee the necessary relations between initial and final momenta following the
two independent successive two-particle scattering events associated with the diagram repre-
senting (137 b)—namely first particle 2 is scattered by 1 with 3 playing no role, after which
particle 1 plays no further role as 2 is scattered by 3. Without postulating that the total initial
momentum #K = 0, let the momenta (in units of #) of 1, 2 respectively after the first scattering

be k3, ky where R+ By = by + by, (138)

Since the first scattering is an elastic collision between 1 and 2, k1, = £y, 1.€.

(my +my) kygy = |my ey —my Ry| = |(my+my) k] —my(Ry + By |, (1394q)
using (138). With the definition (294d) of ky,, (1394) can be put in the form
Fuoy = | Rygi + Ry — Ry (1396)

But since particle 1is unaffected in the second scattering, k] = ky;, making (139 5) identical with
the condition for which the argument of the d-function (135 6) vanishes. Other permutations of
such two successive two-particle scatterings are associated of course with corresponding permu-
tations of (135 4), which in turn correspond to other (than (137 4)) terms in (1335).

Similar results (to those already discussed) pertain also to derivations of T*(ki—> k;) or
Ts(ki— k) from (134 4) or (133a) respectively, starting from the expressions for @§ or G5+
given by (84¢) or its centre of mass analogue. In particular, one thus finds

Ts(ky— ky) = [P0 (Vag +Vay) + D™ (Vay + Vag) + B5i?™* (Vg + Vag) 1 PEH), (140)

while 7%(k;— k) is given by the laboratory system analogue of (140) and obeys (134 4). Equation
(140) obviously is the time-reversed analogue of (133 ), and equally obviously suffers from the
same deficiencies—i.e. contains the same double-scattering divergences—as does (1335).
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I now observe that the on-shell d-functions discussed in this subsection, and in §§4.1.1 and
4.1.2, illustrate what appears to be a general relation between the asymptotic behaviour of any
part of &P (or B{1), e.g. B (or P{}), and the dimensionality of the d-function in the contribu-
tion this same part makes to the laboratory or centre of mass scattering amplitude. Specifically,
as r—oo along directions v; # v, i.e. along directions v; not corresponding to the possibility
of propagation in bound states: (a) ®$3(#), cf. (72), decreases like ¢{F(ry,), i.e. like 71 = 7,
and the associated contribution to 7 (kj— ki) contains the three-dimensional d-function
8(K 9 — K1g;) (recall the discussion preceding and following (131)); () the laboratory frame
P (ry,) still decreases like @if)(ry,), i.e. like 72 = p~1, and the associated contribution to
T (k;— k) contains a six-dimensional é-function, namely & (K5 — K,;) multiplied by 6 (K — K3) ;
(¢) according to § E. 3, there are parts of @§P)(#) decreasing like p~2, and these parts apparently
give rise to the one-dimensional é-functions (135) contained in 7°(k;— k).

Evidently in the laboratory frame the rule is: as r—o0||vt # vy, if the part of &{*)(r) under
consideration decreases like p#p—%, where x is an integer > 0, then the associated contribution
to T' (ki — k¢) contains a d-function of dimensionality x. Similarly, in the centre-of-mass frame, if
as #—>o0||9s # 9, the part of @{)(#) under consideration decreases like p#p~52 where y is an
integer > 0, then the associated contribution to 7" (ky— ki) contains a d-function of dimension-
ality y. Of course, because (555) holds, the d-function dimensionalities associated with corre-
sponding values of x and y are related by x = 4 3. Moreover, these rules can be understood.
Along directions vi # v, the scattered part of ¥{+(r) normally would be expected to diverge
like an outgoing spherical wave in nine dimensions, i.e. like G&(r; #’), which is of order p—* at
large . The amplitude with which @{*)(r) diverges along v; is measured by 7'(k;— k;) of (120).
Because of special symmetries in the interaction V, however, all or parts of @{*)(r) may not be
able to diverge in a fully nine-dimensional fashion along all vt # v, ;. These inabilities mean
@{P)(r) or parts thereof are being forced to diverge in a restricted space of less than nine dimen-
sions, i.e. that @{*)(r) or parts thereof actually will decrease asymptotically like pi®p—4, where
x is an integer > 0, and where x > 0 corresponds to restricted propagation in the sense just
described. Correspondingly, for @{")(r) or parts thereof with x > 0, postulating (1204) is wrong;
the resultant d-functions in 7'(k;— k;) reflect the failure of (1204), as has been discussed, but
also express the x independent aforementioned restrictions on the directions v¢ into which—
for given vi—®{P)(r) or parts thereof can propagate. For example, the fact that Vis independent
of R means @{7)(r) has a factor e!¥"-® so that no part of ®{"(r) can be diverging in a space of
more than six dimensions (the space of # = ry,, y,), i.e. even @) (r)—the ‘truly’ three-body
scattered part of @{P)(r)—decreases asymptotically no more rapidly than p—®?; correspondingly,
even the truly three-body scattering amplitude 7¢(k;— k;) will have the three-dimensional
8(K;:— K;) factor required by (128), which factor also expresses the fact that @{")(r) actually is
propagating to infinity only along directions vs consistent with the three independent require-
ments K; = K. The centre-of-mass frame rule cited above is similarly understood. The considera-
tions of this paragraph make it quite clear that the complicated analysis in § E. 3 is basically
correct, i.e. it now is quite clear that the presence of the one-dimensional d-functions (135)
deduced in §B. 2 must be associated with the existence of contributions to @{*)(#) behaving
asymptotically like p—2.

The conclusion that @ (#) generally has contributions ~ p~2 is given added plausibility by
the following special illustration. Suppose particles 1 and 2 do not interact with each other, i.e.
Vs = 0, and suppose further that particle 3 is infinitely massive (and thus has zero velocity, or

16 Vol. 270. A.
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else its momentum would be infinite). Then the laboratory and centre-of-mass frames are
essentially identical, and the collision induced by ¥ of (21 4) is no different from simultaneous
scattering of the mutually non-interacting particles 1 and 2 by a centre of force. For such
scattering, with the origin at the centre of force, Schrédinger’s equation is

fi2 #2
[_Z_MV%_Z—%V%+I/1(r1) + V(1) —E] P =0, (140.1)

where the former Vy;, V,3 now can be denoted by V1, V; respectively. With the incident wave
wi — ei(k].r1+k2.r2) (140‘2)
(dropping the here unnecessary subscript i in the components of k;), the scattering solution to
140.1) obviously is
(140.1) obviously W, 1) = PO (r) PEO(r), (140.3)

wherein Y (r,), Y§"(r,) represent the independent scattering of 1, 2 respectively by the centre
of force. In particular,

) = S ) "
P (ry) = eterr 1 040 (ry), '
. . elfrr
with lim @& (r)) = a,(v,) ,
r1—>0||v, 7'1
. (140.5)
. elkz’l’g
lim @7 (r,) = ay(vy)
72> ||v, T‘Z
Substituting (140.4) in (140.3),
Ti‘f‘) —_ ei(k1.71+k2.r2) + eikl-"l ¢§+) + eil(z.rz q)ﬁ‘l‘) + ¢§_+) Q‘(2+)’ (140. 6)

Now compare (140.6) with the defining equation (61) for @§*). The first term on the right side
of (140.6) is ¥r;; in the present case there is no purely two-body scattering of 1 by 2 because
Vis = 0, i.e. @ = 0 in (61); moreover, the second term on the right side of (140.6) represents
the scattering of 2 by the centre of force with no scattering of 1, i.e. (recall (72)), the second term
on the right side of (140.6) corresponds to @’ in (61); similarly, el*-2@{") in (140.6) corre-
sponds to @§}” in (61). Therefore, in our present illustration, @§ of (61) is the product &{" &H),

But, from (140.5), this means
. eikl"'l eikz’l’z 1
lim @M (ry, ry) = a,(vy) ay(vs) =~ (140.7)
r—>o0|lv T Ty r

where (of course) v is specified by v;, v, and the ratio r,/r,, as explained in the first paragraph
of § 3. The result (140.7) explicitly shows that @ (#) ~ r—2 = ~ p~2in this special case, remem-
bering that there now is no distinction between the centre-of-mass and laboratory frames. As
a matter of fact, the higher order terms in (140.7) are ~ r~3, not 7=52, consistent with the expecta-
tion that there should be no truly three-particle scattering in the collision between two mutually
non-interacting particles and a centre of force.

4.1.4. Divergences associated with bound states

In addition to the on-shell é-functions which have been discussed, the amplitudes 7" and T
given respectively by (120) and (126) contain off-shell -functions when two-body bound states
exist. These off-shell -functions in 7"and 7 have essentially the same form as those (e.g. (47))
occurring in (52), and their presence in the integrals (1205) and (126 ) is demonstrated via
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essentially the same argument as was employed (in §§ A. 4 to A. 6) for (52). For example, because
P{*(r') in (1200), like G (r; 1') in (524), can contain a term proportional to

exp {ip' (E — &)} uy(r1,) [p'8,

the 7, term in (120 4) contains a contribution behaving like (see § A. 4)

S(J{E: — e} — A Er — (7230 /2101) }), (141a)

when there is a bound state u;(r,,) of energy €; into which particles 1 and 2 can combine during
the collision. The corresponding contribution to (126 5) is proportional to (see § A. 6)

O (Kygge — Kyap), (1416)

where (114 5) defines Ky, in terms of Ey; the 6-function (1415) is the result to which (141 a)
reduces (except for constant factors) when K; is set equal to Kj. I note that these d-function
contributions to 7" or T arise from the asymptotic behaviour of @{" or & at large distances,
and therefore are associated only with those bound states u;(r,;) which actually can be formed
during the collision of three initially free particles; in (52 a), on the other hand, é-functions are
associated with all possible bound states of the three-particle system, because all such bound
states are present in the asymptotic limit of GV(r; r’) at large r'. For example, because energy-
momentum conservation prevents three initially free particles from combining into a three-body
uj(r19, rs3), the existence of three-body states does not cause (1205) to diverge, though such
states do produce divergences in (52a) (see § C. 5).

The presence of the divergences (141 a) or (141 b) has the usual significance, namely that (123)
or (125) respectively must be invalid. In particular (see § C. 5), the d-functions (141 @) indicate
that at large 7 the integral on the left side of (123) has non-negligible contributions, corhpared
to r~4, from bound state propagation in the region ' > r along v;, (where rj, remains finite as
r’—>0o0), much as in the analogous integral on the left side of (99) (where the non-negligible
contributions arise from 7" — co along v{,). Of course, these contributions to the left side of (123)
from 7’ — 0o along vy, are in addition to, and in now way negate, the contributions dominating
r~¢from r’ — o0 along arbitrary directions v’, to which we ascribed the failures of (123) discussed
in the preceding subsections. Moreover, as (by now) is to be expected, the d-functions signalling
the failures of (123) or (125) due to bound states are readily interpretable. For instance, the
d-function (141 ) corresponds to conservation of the energy of particle 3 relative to an observer
moving with the centre of mass of the entire system, as is physically reasonable for a contribution
to the V}, term in (126 b) associated with formation of the bound state u;(ry,).

Nevertheless, despite this possibility of interpretation, it is doubtful that the é-functions (141)
occurring in (120) and (126) have any physical significance whatsoever. I now am contrasting
the d-functions (141) with those discussed in §§4.1.1 to 4.1.3. Admittedly the d-functions in
§§4.1.1 to 4.1.3, like the d-functions of this subsection, are encountered in the configuration space
formulation of scattering theory under present consideration solely because invalid mathematical
manipulations have been performed. Naturally, such invalid manipulations always should be
avoided if possible, especially if they lead to expressions for presumably physically meaningful
quantities, namely transition amplitudes, involving non-convergent integrals. There is no
immediately urgent physical reason for introducing valid mathematical procedures so as to avoid
the d-functions of this subsection, however, since these §-functions make no contributions to the
scattering coeflicients w or @ computed from (1215) or (127¢), by virtue of the fact that their

16-2
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arguments do not vanish on the energy-momentum shell (e.g. remembering ¢; < 0, (35) and
(114 5) show the d-function (141 5) cannot be infinite on the centre-of-mass system energy shell
E; = E;); the -functions of §§ 4.1.1 to 4.1.3, being on-shell, make infinite contributions to (1215)
or (127¢), and so must be avoided via mathematically acceptable procedures—or at the very
least via some sort of reinterpretation (recall the remarks following (122), and see §4.2)—if
physically sensible reaction coefficients are to be computed.

Moreover, the steps which must be taken to avoid the J-functions of §§4.1.1 to 4.1.3 are
physically as well as mathematically significant. Section 4.1.1 implies that the probability
current flow must be computed in the centre-of-mass frame; §4.1.2 means that two-body
scattering terms must be subtracted from @ before the computation of the three-body scattered
current flow is initiated; and §4.1.3 shows that it will be necessary to initially subtract from
@) certain double scattering terms as well. The -functions of this subsection, on the other hand,
are eliminated without any subtraction merely by starting from the iterated formula for &
implied by (61) and (69), instead of, as heretofore in this section, from the formula (52 4). More
precisely, start from (61) and (69), but use the formula

B () = f AP G (73 7) Vg (110) T, (142)

in place of the known closed form result for {3’ given by (72). Then, performing on all integrals
in the formula for @ the usual invalid interchange of order of integration and limit 7—> oo, one
again obtains (126 4), but now with

T (ki—ky) = V" Vot + P * Vo Oy + V5 * Vay U + T (ki k), (143)

where T(k;— ky) is given by (133b). Section B. 2 shows that (1335), though of course still
containing the d-functions discussed in § 4.1.3, has no é-functions of the type (141 ) associated
with bound states. Similarly, the other terms on the right side of (143) contain no é-functions
associated with bound states; in fact, recalling (105) one sees that, for example, the quantity
defined by (1304) and evaluated in (130¢) (which obviously contains no é-functions of type
(1415)) is identical with the quantity ¥{3*V,,¥; on the right side of (143). Section E. 2 shows
that bound-state propagation does not invalidate (132), consistent with the absence of bound-
state d-function divergences in (133 5).

I stress that the preceding two paragraphs do not mean that the presence of these d-functions
(141) in (120) and (1265) is wholly inconsequential. As §§4.1.1 and 4.1.2 taken together
illustrate, it may be easier to take account of some on-shell d-functions than of the off-shell
d-functions (141), which (if the on-shell divergences were not present) would cause the integrals
(1205) and (126 ) to be oscillatory. In particular, approximate estimates of #{~* can be con-
structed which—when inserted into (126 ) so as to obtain approximate estimates of 7T (k;— k¢)—
enable essentially exact subtraction of the single scattering two-body contributions (known
exactly from (130¢)) on the right side of (143); however, even if there were not the double
scattering complications discussed in § 4.1.3, such approximate ¥{™* probably would give very
poor estimates of 7°%(k;— k) because of now non-vanishing contributions from the 8-functions
(141b) (compare the discussion of the significance of the d-functions (47), in § 2.2 following (48)).
Of course, this particular difficulty associated with the d-functions (141) is perforce avoided
when T'$(k;—> ki) is estimated starting from (140). I also point out that the preceding two
paragraphs must not be taken to imply that the exact 7°¢(k;—> kg)—or better yet the exact truly
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three-body amplitude 7°%(k;—> k;) obtained from the asymptotic behaviour of ®{H—do not
have singularities (as functions of k;) where the arguments of the d-functions (1415) vanish.
I merely am insisting that the presence of off-shell singularities cannot be inferred legitimately
from oscillatory (i.e. mathematically undefined) on-shell integrals for T (k;—> ky). It is necessary
to start with a convergent integral (e.g. T¢(ky— ky) or TS(ky— ky) with the double-scattering
contributions (135) subtracted out). The analytic continuation of this originally convergent
integral well might have singularities at K, = Kj,; on the other hand, there is no reason to
think these now legitimately inferred singularities at K5y = Ky, if actually found to exist, would
be of the §-function (1418) type.

It is worth noting that the off-shell §-functions we have been discussing show up in the expres-
sion (124a) for T (ki— ki) even though such d-functions do not appear in the real energy
Lippmann~Schwinger integral equation (42) from which (124 4) is derived. Correspondingly,
bound state propagation invalidates the interchange of order of integration and limit r — co| vt in
the integral on the right side of (42), even though (42), unlike (52 a), is convergent; specifically,
at large 7 the integral (42) has contributions of order r—* = p~* from bound state propagation in
the integration regionr’ > 7, as shown in § C. 5. Similar comments pertain to the expression (131)
for T (ki—> k).

I conclude this subsection with some remarks stemming from the relation (1314). Although
the argument leading to (131d) is unsatisfactory (as has been explained), nevertheless the
results of this entire § 4.1 probably are relevant to the physical significance of <f| T(?) |i) and the
d-functions contained therein, when i, f each denote centre-of-mass plane wave states, and when
A equals one or both of £, E. At the moment, however, I am not prepared to state precisely how
the considerations of this particular §4.1.4 relate to the bound state singularities found by
Rubin et al. (1966, 1967a), who (in the special case of Yukawa interactions V,4) examine
{f] T(X) |i) as a function of A for fixed assigned physical values of the vectors y,; = (2m, )2k,
and yaf = (2m, )2k, associated with the i, f plane waves respectively.

4.2. Volume dependence of reaction rates

Equations (2) and (121¢) imply that'w defined by (1214) and @ defined by (1274) are
related by w(ky—> ky) = 70 (ky— ky), (144)

where 7 is the large volume within which the three-body scattering of present interest is taking
place. That the ratio w/w must be a quantity having the dimensions of volume can be seen simply
from comparison of the right sides of (1174) and (118a). The quantity W is defined via the
Green Theorem in the centre-of-mass space in complete analogy with (45), and therefore has
the same dimensions as W (since the centre-of-mass kinetic energy operator 7' has the same
dimensions as 7'); however, the laboratory system surface element at infinity dS is eight-
dimensional in the present three-particle problem, whereas d is merely five-dimensional. The
particular relation (144) is obtained from an argument given previously (Gerjuoy 1958a).

From (128), | T (s> k) |2 = (2m0)°[8 (Ke— K) 12| T (ks> k)| (145)

But, as pointed out beneath (122), to make w physically meaningful, one of the d-functions in
(1454a) must be eliminated, presumably via some reinterpretation of §(K¢—Kj). A natural

reinterpretation is
0(K:—Kj;) = € )3deel(K‘ K0.R (146 a)
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[6(K:—K)3)]? = ﬁde ei(KrKo.Rdef cl(K—K). R

= h(2;)33(Kf_K1) de'é(KrKi).R’
1 1 -
= W&(Kf—Ki)J‘dR' ~ (2Tr)33(Kf—K1) T. (146 b)

Using (145) as reinterpreted by (1465) in (1215), and comparing with (127¢), yields (144).

Actually, because of the on-shell divergences discussed in §§4.1.2 and 4.1.3, use of (146) is
insufficient to make physically meaningful the quantities w and w of (121 4) and (127 ¢). However,
the procedure of (146) can be employed to eliminate all troublesome squares of d-functions in
(1215) and (127 ¢), thus ultimately yielding finite (in any finite volume 7) probability current
flows # and & . Thus, in the contribution (130¢) to 7'(ki—> k), for example,

| (12)*11127101|2 = (2m)% [0(K g — Ky91)]? |t12(k121" k121)|2
~ (21)370 (K9 — K1) [t12(Rgi — Feyor) |2 (147)

Inserting (147) into (127¢), one sees that @ (i—f) has a contribution I will call w{(i—>f)—
corresponding to purely two-body elastic scattering of 1 and 2 in the three-particle system—
given by

—(a) 2 1
w{‘?(1—>f) = WWT[t12(k121’>k12f)|23(Ef—Ei) O(Kt—K;) (Kyg — Kg;) dRyy d Ryp d ey (1484)
2w 1

= TWT |t12<k121_> k12f)123(Ef‘Ei) J(K:—Ki) 3(k3f — ky;) dRy dky d ey, (1485)

using the second equality in (29¢) for K,,. Therefore, integrating (1485) over dky,

2w 1 r2l/ ke k2 k2 Ok
77(3) e 2 M, 2
w1z (1> 1) = f (2"T)3T|t12 Frz = Rrar) [ 6{2 [(m1+m2) (ml m2>1]}

X O (Ryy + Rog — Ryy — ky;) dRyydky.  (148¢)

Or wP(—~f) = rw@(i—~f), (149a)

. 2m 1 h2k2q  Fi%k,y
where TR 1) = 2 e o > ) (G - 1) (1490)
2 1
= %(éﬂ_—)g |t12(k12i'> k12f)128<Ef"E1) 3(KY_K1) dklf dsz. (1495)

In (149), w{? (i—>f) represents the conventional elastic scattering coeflicient for particles 1 and 2
in their centre-of-mass frame; the definitions of the two-particle total energies £ and total
momenta K in (149¢) are obvious. It is understood that particle 3 never appears in the computa-
tion of w{¥ or its laboratory frame analogue w{}; in particular, these quantities are computed
using Schrodinger’s equation for particles 1, 2 only, with incident waves—in the laboratory and

centre-of-mass frame respectively— Yy = eillarthery), (150 )
%1 = elkiz.r1z, (150 b)

Furthermore, (1495) and (149¢), which are the two-particle system analogues of (1274) and
(127¢), can be derived without any improper mathematical manipulations, because with the
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incident wave (1505) the problem of computing @{¥(i—f) reduces to potential scattering;
correspondingly, @{? is assuredly 7-independent. But, using (144), to the relation (149aq)
corresponds W@ (—>f) = PR [->1). (151)
Therefore, as foreshadowed in §1, (121 b)—taken together with (121¢) or (2)—implies the
quantity 71 (k;— k), supposedly representing the actually observed scattering rate per unit
volume into wavenumber ranges d k¢, d Ry, d kg, will not be independent of the volume in the
limit 7 oo for all ky;, Ry, ksp. Rather, at kyy, Ry, ky; consistent with the restrictions imposed by
the three d-functions in (1484) or (1484), 77 seemingly will be proportional to the reaction
volume 7.

The above result is just another way of seeing that w and @ of (121 %) and (127¢) are not the
‘true’ three-body elastic scattering coeflicients; these, as discussed in § 1, still will be computed
from (1214) and (127¢), except that the true three-body amplitudes 7¢(ky~> k;) and Tt(k;— ky)
—determined by the asymptotic forms of @Y and &}—will replace 7" and T respectively.
This last remark suggests that the result (151)—having been deduced by a somewhat question-
able argument (147), starting from formally divergent expressions (for 7" or T') derived via
invalid mathematical manipulations—does not have any physical significance. This suggestion
is incorrect, however, as the immediately following subsection shows. Instead, the volume
dependence of (151)—Ilike the d-functions of (128) and (130¢) which are its source—is physically
interpretable and, in fact, to be expected.

4.2.1. Volume dependence and incident wave normalization

One subject which has been ignored thus far in this work is the genesis of the relations (2) or
(121¢). To be more explicit, there is the following question which should be answered: because
the normalization of the incident wave (214), namely unit amplitude, is a purely arbitrary
choice, how do I know that (2) or (121 ¢) relate the actually observed scattering rate to the proba-
bility current flows computed from ¥ of (214)? Or, to put it differently, granted I somehow
have managed to determine the asymptotic forms of the truly three-body @) or @+ corre-
sponding to the unit amplitude incident wave (214), how do I know that the corresponding
(presumably divergence-free and therefore 7-independent) centre-of-mass frame ‘true’ three-
body coefficient w(i—f) yields the expected laboratory frame reaction rate after multiplication
by precisely N; N, N;77?

Before trying to answer these questions for three-body scattering, let me try to answer their
analogues for conventional two-body scattering of species 1 and 2, in the complete absence of
species 3. In this latter event, the analogue of (2) is

Z115(122)<k11, ko — Ry, ky) = N, Nﬂw(lZz)(km ky — Ry, ky), (152a)

where @ is given by (1495) or (149¢) and where ® represents the observed scattering rate of
particles 1, 2into d ky;, d Ry, in a large volume 7 containing particle species 1 and 2 only. Then the
customary (and quite satisfactory) way of understanding the volume dependence of (1524) is
as follows. One first observes that (130) and (1495) imply

1,7(122)(i—>f) = .V1 - 1’2| T (Ryg—> Rygp) dnyg, (152)

where T (kyq; — Ryg) is the conventional centre-of-mass frame differential cross-section for elastic
scattering into the direction 1,4 of k, 4, computed as if for potential scattering of a particle having
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mass /,, and incident wave vector ky,; ¥4, ¥, are the classical particle velocities, of course, and it
is understood that scattering occurs only into ky;, Ry, consistent with energy-momentum con-
servation. By definition of the cross-section, however, if a beam of particles 1, containing N,
particles/c.c. with velocity v,, is incident on a single particle 2, the number of elastic scattering

events per second into dn, is
Ny |0y = vy| TRy — Ryyy) Aty (152¢)

The scattering rate ® with N, = N,7 scatterers will be N, times (152¢), which, using (152 ), is
precisely the result (152 a).

The foregoing interpretation of (152 4) is not readily generalized to collisions involving three
incident particles because, for three-body collisions, it is not readily possible to find a quantity
playing the role of the cross-section; there is no useful analogue of the cross-section because the
three-particle centre-of-mass frame incident wave (335) propagates in six rather than three
dimensions, so that going to the centre-of-mass frame does not reduce the three-particle collision
to potential scattering. However, I now shall give an alternative interpretation of (152 @) which,
because it rests on considerations of the laboratory frame six-dimensional two-particle incident
wave (1504), is easily generalizable to collisions between three (or more) particles.

Obviously the average scattering rate from a volume 7 containing randomly and uniformly
distributed particles 1 and 2, in numbers N, = N,7and N,, will be N, ¥, times the average scat-
tering rate from the same volume containing only a single particle 1 and a single particle 2,
assuming these single particles each may be found anywhere in 7 with uniform probability per
unit volume. The incident plane wavefunction corresponding to (1504), but normalized to one
particle 1 in 7 and one particle 2 in 7 i3

7)01, — lei(kld‘l'l'kzﬂz) (153 d)
T

because, for example, the probability of finding particle 1 in any dr, within 7 is

1 1
drlder2 [ri(ry, 1) |2 = drlﬁr—zfdr2 = ;drl. (153 b)

On the other hand, because (50 ) shows @;(E +ic), and therefore also its limit &{)(E), rigorously
is multiplied by 7! when ; is multiplied by 771, it follows from (45a) and (117 @) that the out-
going probability current flow computed with ¥{ of (153a) is precisely 772 times the corre-
sponding flow computed with 1; of (150 a). In other words, recognizing that the definition (1214)
of w applies to two-particle as well as to three-particle systems, the scattered probability current
flow computed with ¢ of (1534) yields precisely

D (1) = 72w@(—>f) = 1w (> 1), (154)

wherein the second equality holds because the conventional laboratory and centre-of-mass frame
two-particle scattering coefficients, w and @ respectively, also satisfy (144). Moreover, ®;§
of (154), with w{? given by (1495), represents the scattering rate when a single particle 1 and
a single particle 2 are to be found in 7. Multiplying (154) by N, N, = N, N, 12 again yields (152 a).

The fact that (154) represents the scattering rate for a single pair of particles also can be
understood on the following less exact but very physical basis. In a genuinely two-body collision
involving short-range forces, it can be assumed that scattering takes place only if the two
particles 1 and 2 manage to get within a (possibly dependent on |v, — v,|) distance & of each
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other, where the total elastic scattering cross-section & =~ 7b% In effect this relation defines the
(dependent on relative velocity) quantity b; of course, often, but not necessarily, 4 turns out to
equal approximately the range at which the interaction Vj,(r;,) becomes negligibly different
from zero. Now again consider a large volume 7 containing precisely one particle 1 and one
particle 2, each of which may be located anywhere in 7 with equal probability per unit volume.
Then at any given instant, in any given volume 7, = 53, the probability of finding particle 1 in
74 is To/7. Hence the probability that particles 1 and 2 are scattering within 7, at any given
instant = (7,/7)2, the probability of simultaneously finding 1 and 2 within 7,. The number of
such volumes 7, in 7 is 7/7,. At any given instant, therefore, with one particle 1 and one particle 2
in 7, the probable number of scatterings taking place is 7,/7. To convert this result to a scattering
rate per particle pair, one must divide by a time ¢, representing the average ‘duration’ of a
collision, i.e. the average time a pair of particles remains within scattering range; this division
by ¢, recognizes that even with a large number of particle pairs in 7, scattering continues at a
steady average rate only because particles complete one scattering event and move into a new
volume 7,, where they again have a chance 7,/7 of scattering against any other given particle in 7.
Hence the scattering rate per particle pair in 7is & 7o/7¢,. Since £, = |v; — v,| 1), this scattering
rate per particle pair has exactly the form (154), recalling (1525) as well as the definitions in
this paragraph relating 7, and @ to 4.

Now, having managed to give simple laboratory system interpretations of (152 4), I turn to its
analogous three-body relation (2). First, let me proceed inexactly, though qualitatively correctly,
as in the preceding paragraph. A true three-body collision between particles 1, 2, 3 occurs only
if the three particles simultaneously find themselves within some volume 7, (possibly, but not
necessarily, of the same order 42 as in individual two-particle collisions between individual pairs
o, ). With a single particle of each species & (o = 1, 2, 3) in a large volume 7, the probability of
simultaneously finding all three particlesin a given 7,is (7,/7)3. Letting £, again denote the average
collision duration (now not as readily related as previously to the relative particle velocities),
the true three-body scattering rate per triplet 1, 2, 3 in 7 is

3 2
MY O ) N (155 4)
T) Tot, T,

Therefore, the laboratory frame scattering rate with N, = N,7 particles in 7 is
2
(i) =N, N, N, 0" ~ N1N2N3T;—°. (1555)
(9

Equation (155 5) has the form (2); in particular, it asserts that the measured laboratory scattering
rate should be proportional to 7, as well as to N; N, N,. If (2) now is regarded merely as a definition
of the proportionality factor @ between the actually observed three-body scattering rate @ and
N, N, N;7, then (1555) shows

<
o

w

e

|

(155¢)

~

c

Thus, if (2) really provides a prediction of the measured ® in terms of the true three-body reaction
coefficient @ determined from @{" (as this paper has been asserting), then calculations of this
w from @1 should be consistent with (155¢). In other words, the computed true three-body
scattering coeflicient @ should turn out to be 7-independent, and should be interpretable as the
square of a reaction volume divided by the collision duration. '
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I also can argue as in the next to the last paragraph above, wherein no approximations were
made and no ill-defined average quantities (e.g. £,) were introduced. The incident wavefunction
corresponding to (21 a), but normalized to one particle of each species 1, 2 and 3 in 7is (compare
(153a)) .

! eilkarytk.raths.rs)
¥ 3¢ (1564a)
Thus the true three-particle collision rate with one particle of each species in 7 is precisely
W' (i—>f) =713%w(i~>f) = 2w (i—>1), (156 b)

where w, w here are supposed to be the true reaction coefficients determined from @¥H, @+
corresponding to the conventional incident wave (214), i.e. determined from the truly three-
body parts of the conventional @{", &) whose asymptotic forms were examined in §4.1.
Multiplying the precise scattering rate (156 5) per triplet by the number of triplets

N, N,N, = N, N, N,7

in 7 yields precisely (2); in other words, the argument of this paragraph implies that the measured
scattering rate ©, and the reaction coefficient @ determined as described in the preceding sentence,
indeed must be related as in (2). Note that this present argument does not imply @ is propor-
tional to 7; win (156 b) might be 7-dependent, for all this present argument knows. However, the
fact that the true three-body reaction coeflicient & is independent of 7 will become apparent
when @ is calculated correctly, i.e. starting from @{" and not employing any improper mathe-
matical manipulations. Alternatively, having now shown @ in (2) indeed must be the true three-
body reaction coefficient, I can appeal to the considerations of the preceding paragraph, in
particular to (155 ¢), thus inferring (without actual calculation of @ from @{")) that such calcula-
tion will yield a @ independent of 7. In fact, once (155a) and (156 5) each have been deduced,
the relation (155¢) for the true three-body reaction coefficient @ of (156 4) follows immediately,
without any necessity for referring to (2).

This result answers the questions raised in the first paragraph of this subsection. I turn there-
fore to the problem of understanding (151). The quantity w{} of (151) represents the laboratory
frame coeflicient for two-body scattering of 1, 2, when computed from the solution ¥{* to the
three-particle Lippmann—Schwinger equation corresponding to the three-particle incident wave
(21a). Now what two-body rate w;$ of 1, 2 scattering should be expected with the incident wave
i of (1566 a) ? The answer to this question, clearly, is the same rate (154) as was computed using
the two-particle ¢ of (153 a), because both these incident waves correspond to one particle 1 and
one particle 2 in 7. In other words, it must be true that

PG —~>F) = DP[E—~F) = 71w >6). (157 a)

But, as explained previously following (153 4), the probability current flow computed with {
of (1564a) is precisely 7~2 times the corresponding flow computed with ¢ of (21a). Therefore
I see that with the incident wave (214) I must expect to find a laboratory frame two-body
cocfficient W (i) = POP (1) = 12w (1), (1575)
which is precisely the result (151) obtained earlier from the expressions for {2 and w{ in terms
of the matrix elements 77,(i—f).

The argument in the preceding paragraph makes it apparent that the 72 dependence in
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w® (i—f) is necessary if the predicted observed two-body scattering rate ¥{ using the three-body
incident wave (21a) is to agree with the conventional prediction ¥ of (152 a) obtained using
the two-body incident wave (1504). Indeed, one can say flatly that if adding an irrelevant
particle 3 to the pair 1, 2 had changed the physical predictions, this publication’s whole approach
to many-particle collisions would have become very questionable. The preceding paragraph and
earlier discussion in this subsection also suggest a simple series of rules for making the connexion
between collision theory and experiment, for any collision process and whatever the number of
particles involved: (i) compute the reaction coefficient using unit amplitude waves; (ii) if the
mathematics has involved invalid manipulations, so that on-shell d-functions appear in the
transition amplitudes, reinterpret them along the lines of (146) and (147), permitting only the
first powers of -functions to remain in w or w; (iii) renormalize so as to correspond to an incident
wave with one particle of each species in a volume 7; (iv) multiply by the appropriate number of
particle pairs, triplets, tetrads, etc. (e.g. by N, N, = N, N,7% for two-particle processes, by
N; N, N, 73 for three-particle processes, etc.), to obtain the laboratory system reaction rate @ in 7.

Granted I have not proved the legitimacy of the above rules, this subsection makes it unlikely
that they are not quite generally applicable. On the other hand, I must point out that especially
rule (ii) above is dubious; certainly I have not shown that the prescribed replacement of powers
of on-shell §-functions by powers of 7 always will make good physical sense, although the likelihood
that this will be the case now seems much greater than previously might have been supposed. In
particular, the next subsection will demonstrate that the 7-dependence implied by the double-
scattering d-functions (135) can be understood physically. Nevertheless, it is apparent that the
results of this subsection in no way negate the results of previous sections. The presence of
d-functions in transition amplitudes still signals improper mathematical manipulations, generally
reflecting the fact that erroneous assumptions have been made concerning the asymptotic
dependence of the scattered wave terms whose limit as r — co is being extracted; the corresponding
anomalous 7-dependences of computed reaction coefficients indicate the same fact from a different
point of view, i.e. they indicate that physical processes other than those desired have been
included, e.g. two-body scattering in the supposed three-body reaction coefficient.

Section 4.3 below illustrates the fact that qualitative arguments like those leading to (155) can
lead to a predicted centre-of-mass reaction coefficient proportional to a negative power of 7.
I believe that in this event the corresponding collision process either really is unobservedly small
in any large volume (in comparison with related competing processes), or at most has a laboratory
system rate @ (i—f) proportional to 7; it also is possible that a predicted @ proportional to
77%, z > 0, means simply that the process under examination is essentially meaningless within the
theoretical formulation adopted. In either case, the above rules probably are not applicable. It
also seems reasonable that reaction coefficients @ which really are physically proportional to
77%, z > 0, correspond to processes which, in the particular theoretical formulation adopted,
depend on parts of @) (#) decreasing more rapidly at large # than does the relevant free-space
Green function G#P)(#;#'), i.e. more rapidly than #~18/—D-1/2; here J is the number of inde-
pendent aggregates moving outward to infinity in the laboratory system (J = 2 in a three-
particle collision resulting in formation of bound states uj(ry,) as, for example, in (174)), and
Gy has the dimensionality of the centre-of-mass frame free space Green function for a system
of J elementary particles. Needless to say, I have not proved the immediately preceding assertion
concerning w ~ 77%, z > 0; we have seen, however, that d-functions in transition amplitudes
generally lead to @ proportional to positive powers of 7, and seem to be associated with terms in
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&) () decreasing less rapidly than the relevant free space Green function G (7 #) (recall the
rules cited at the end of § 4.1.3).

4.2.2. Double scattering contributions

In this subsection I shall discuss the volume dependence implied by the §-functions (135). To
begin with, the briefest consideration of the contributions made by these d-functions to w and @ of
(121b) and (127 b) makes it evident that there is little hope of being able to compute precisely the
anomalous 7-dependences these d-functions yield. It is easily seen that the d-functions (135) make
contributions to @ (i—f) proportional to 7%, but the precise magnitudes of these contributions are
essentially incalculable.

To make these last assertions more explicit, suppose I write, as in (146) and (147),

1 e
Bk Vs g = ) = Dk = Q) = 5 [ ettt (1554

[8(k121 - Q)]z = (2#_“_)2[(196 Cix(klz_‘Q)J‘dx' el (k12i— Q)

= %8(/{121_1k12f+k1f_klii)fdx,' (1585)
Then the one-dimensional integral over dx" in (1584) is not as readily interpretable as the three-
dimensional integral over dR"in (146 ). Certainly the integral over dx’ in (158 ) can be assumed
proportional to some average dimension of 7, i.e. proportional to 75. The proportionality factor
is ill-defined, however, and probably will depend on the shape of the large volume 7. In other
words, the best I seem able to do is to replace (1585) by

1 1
[8(ksas — | Rygr + ye — Ry ) ]2 = E%Ca(klzi — | Rygp + kyy — kyy|) 75, (158¢)

where C'is an unknown factor, dependent on the shape of the scattering region 7, but not on the
magnitude of its volume. Recalling that (135 4) is a contribution to 7 of (133 ), and comparing
with (147) and (148), one sees that insertion of 7% into (127 6) will yield a @(i—f) containing
terms surely proportional to 7%, but with unknown coefficients dependent on the shape of 7. The
corresponding double-scattering contributions to w(i—f) will be proportional to 7%, using the
still applicable (144). I add that the rules cited at the end of § 4.1.3 now make it evident that when
a part of @{F)(r) decreases like pi*p~* along vt + Vo % = 0, the associated contribution to
w(i—f) will be proportional to 73%; equivalently, when a part of &{*(#) decreases like pivp—5/2
along 91 # 9,4, the associated contribution to w (i—f) will be proportional to 73%, assuming
y = 0.

I now show that this 7# dependence of double-scattering contributions to w(i—f)—like the
72 dependence of two-body scattering contributions to w(i —f) discussed in § 4.2.1—is physically
understandable and, in fact, to be expected. As in the case of true three-body collisions, in a large
volume 7 containing N, particles &, & = 1,2, 3, the double-scattering rate corresponding to
(135 b)—namely (recall the discussion of (136) to (139)) the average number of times per second
that a two-body scattering event between 1 and 2 is followed by a two-body scattering between
2 and 3—will be precisely N, N, Nytimes the corresponding rate when 7 contains a single particle
of each species. The desired double scattering rate in this latter situation will be the integral—
over all possible intermediate momenta k; resulting from the first scattering—of the product
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between the rate at which 1, 2 scatterings produce k; and the probability that particle 2 will
scatter from 3 as it moves through the volume 7 with momentum kj. This latter probability is
~ LG,3/7, where Ty is the cross-section for two-body scattering of 2 by 3, and L is some average
dimension of 7, depending on the site of the first scattering, the direction of kj, the shape of 7, etc.;
evidently Ly, is an estimate of the volume wherein scattering of 2 by 3 can occur as 2 moves
through 7. The rate of 1, 2 scatterings for a single pair 1, 2 in 7 is given by (154). Therefore, after
performing all the complicated averages, the desired double-scattering rate g (12, 23) with one
particle of each species in 7 will turn out to be

05(12,23) ~ <(@) (Ii‘;—”)> ~ Cr-%, (159 a)
av

where C again is an effectively unknown factor, dependent on the shape of the scattering region 7,
but not on the magnitude of its volume. Here %} (12, 23) represents the double-scattering contri-
bution to the probability current flow when the incident wave is i of (156 a). Hence the corre-
sponding contribution to w(i—>f) of (1214) must be proportional to 737-5% = 7%, with a shape-
dependent factor C, as found in the preceding paragraph beneath (158¢). The corresponding
observed double-scattering rate #4(12,23) when 7 contains N, particles of each species will be

b4(12,23) = N, N, N, 03(12, 23) ~ N, N, N, Cr8. (159 b)

I want to contrast this result (1595) for the d-functions (135) with the corresponding result
in §4.2.1 for the d-function (130¢). In the case of the d-functions (135) the computed w(i—f)
using ¥ of (21 ) has terms proportional to 7#; to these terms will correspond observed laboratory
frame scattering rates (i —f) proportional to N; N, N; and to 73. For the d-function (130¢), on
the other hand, though the computed w(i—f) using 91 of (21 a) is proportional to 72, the corre-
sponding observable laboratory frame ®(i—f) is proportional merely to 7, as well as merely to
N, N, (being independent of Nj). Note also that the experimentalist attempting to measure the
true three-body elastic scattering coefficient by crossing three beams (let us ignore the present
utter infeasibility of such an experiment) will have to avoid placing his coincidence counters at
directions and distances corresponding to vanishing of the arguments of the d-function (1355)
and its analogues, if he wishes to avoid measuring double scattering rather than true three-body
scattering. Of course, he also must avoid counter locations corresponding to a single purely
two-body scattering.

4.3. Truly three-body scattering

I return now to our original objective of determining the physical three-body w(i—f), i.e. to
the problem of finding expressions for the true three-body matrix elements (f| T*|i) of (4). It is
argued in § 4.3.1 immediately below that the contributions to & of (69) from triple and higher
rescattering processes (namely, from processes involving any number n > 3 of successive purely
two-body collisions between pairs of the three particles 1, 2, 3) behave asymptotically like
G{P(#;#; E) as #-> o0 along essentially all 9¢ which keep no r,, finite. In other words, as this
chapter (especially in its introduction and in §4.1.3) has made abundantly clear, such n> 3
rescattering processes legitimately can be termed ‘truly three-body’, and are expected to con-
tribute neither d-functions to 7(k;—> ks) of (1335) nor anomalous 7-dependences to w (i—f).
A direct way of attaining our desired objective, therefore, is to develop a procedure for subtracting
the double-scattering contributions to @) of (69), thereby hopefully obtaining @™, If this
could be done, one should be able to compute lim G as #-—> 00|y, therewith determining
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Tt(ky—> ky) in closed form; correspondingly, using the centre-of-mass analogues of (105) and
(106), one would have a closed form expression for the true (or physical) three-body elastic
scattering transition operator T* introduced in §1. I add that because the shape-dependent
factor C'in (158¢) is essentially incalculable, there seems to be no practical way to obtain the
theoretical physical three-body @ (i—f) by subtraction of 7% contributions from the w(i—f)
computed using 7%(k, —k;) of (1335). Thus, to obtain the physical w(i —~f), the necessary
subtraction of non-three-body contributions must be performed before carrying out the
probability current flow computations and J-function reinterpretations discussed in §§4.1 and
4.2, The experimentalist, on the other hand, actually might be able to perform this subtraction
by varying the scattering volume while keeping its shape constant, thus in effect determining the
shape-dependent factor C empirically.

4.3.1. Subtraction of double-scattering terms

Although there is no obvious reason why it should be impossible to do so, I have not been able
to perform the desired subtraction of double scattering contributions to @§") described in the
introduction to this section. The difficulty lies in the need not to subtract too much; otherwise
there would be no problem. The two-body scattering d-function appearing as a multiplicative
factor in (130¢) has its origin in the plane wave factor e'¥12-412 in the &}’ (72) part of &{*). But
the presence of this plane wave factor means the entire term &{3)() fails to behave like Gp(#;#')
as #— o0 along ¥; corresponding to elastic scattering, so that in seeking @ one assuredly can
subtract the entire term @{}) from & (recall the discussion preceding (119)). However, the
double scattering d-functions (135), which appear as additive components of 75(k;— ki),
correspondingly arise from additive components of &{P, To obtain &+ from &), one must
subtract from @§)(#) all terms behaving asymptotically like p~2 as # — oo along elastic scattering
V1, but, as is clear from the rules and discussion at the end of subsection 4.1.3, one must retain in
@EH(#) all (outgoing) terms in &M (#) behaving asymptotically like p=572,

To make more explicit the difficulty of performing this delicate subtraction, let me indicate the
results of one reasonable attempt to single out the double-scattering terms in @§P. According to
§ E. 3.2, the 52 contribution in the GV, B part of B{ (equation (69)) is contained entirely in

GE Vo DY) = — (_;ég)Vza{lE? Gio(E+ie) Vi (E))

- : h2k3 ;

—_ G%;’L)V% {elKIZiJIlZ [g%‘) ( 121)] V12 elk12l~712} , (160)
2fh1a

recalling the centre-of-mass versions of (60) and (72). Therefore I will perform an iteration on

(69), as follows. In the V,; terms of (67¢) use the second equality in (635), proceeding as in

(64) to (67¢), and similarly for the Vy; and ¥}, terms in (67 ¢). Then, after taking the limit ¢ — 0,

one finds D) = DI + OFH) + ) + I, (1614)
where DED = — G Ve[ D) + B, (1615)
P = — GV [PE) + 9], (161¢)
DD = — G Vo[ P + D], (1614)

and where the result of double iteration and subtraction (on the original formula (52a) for

() 1
i) is DD = — GO (Vg + Vi) DIV + (Vo + Vi) P + (Vg + V) D). (162)
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The centre-of-mass version of (162) involves no divergent integrals, and is the desired iteration
of (69); obviously, I could have obtained the same result by iterating directly on (69), using the
centre-of-mass versions of (63).

Because @551 (F) decreases no less slowly than p=2 as 7— 00 along 91 # 9,4, it can be seen from
the arguments at the end of § E. 2 that interchange of order of integration and limit # - co| ¥z is
justified in the integrals (162) for @fH(#), except possibly along certain special v As §E. 2
explains, it has not been shown that these special v¢ really exist; we merely have not ruled out
the possibility that such v; occur. However, the discussion in § 4.3.2 below strongly indicates that
such special ¥¢ (even if they actually occur) are inconsequential for the purposes of this work.
Therefore we infer that for our present purposes interchange of order of integration and limit
7009y in (162) is justified; correspondingly, we may conclude that G¢H) is outgoing and
decreases no less rapidly than p—5? as #— 0|91, except possibly for these same special inconse-
quential ¥¢. In other words, it appears legitimate to conclude that the anomalously propagating
double-scattering contributions to @§*) all are contained in @§5H, P5) and D5 ; thus subtracting
these terms from @) should leave a &) which represents true three-body scattering only.

On the other hand, I see no reason to think that @54 represent anomalous double scattering
only, i.e. contain no parts which should be included in &{". For one thing, § E. 3.2 can be seen
to xmply ~ G4 V3 O Vs B = [0 — C4) Vs B (163)
decreases no less rapidly than p~52. But this result immediately means that @3" on the right side
of (161a) contains a part, namely the left side of (163), belonging in &f) (because it is most
unlikely that the 552 contribution to the left side of (163) is everywhere incoming) ; in other words,
P of (162) does not contain all parts of &™) contributing to G,

Alternatively, (163) means

G Wig B4 = — B i ctown g (T 112) |, oo (164a)
12
contains the entire =2 contribution in (160), just as (160) contains the entire p—2 contribution in
G, BiE). However, replacing g{f’ in (164a) by gi" would notretain the entire p~2 contribution.
Sections E. 2 and E. 3 show the p—2 behaviour in (164a) stems from the fact that the integral
(73 ) behaves like 735! as ;5 — 00; evidently

(g3 — g7 Vipexp {ikyy . 110} = — fdriz dri g (1195 115) Via(112)

X 2430 (1105 172) Via(712) exp {iRyay . 175} (164 0)
also behaves like 753t as r;,—> 00, recognizing that V], is short range. In any event, even if one
could find some iteration of (164 4) that retained all 5~ terms in an integral of convenient or
transparent form, there remains the complication that the p=* contribution to (160) (i.e. to
(164 a)) was obtained in § E. 3 by application of the principle of stationary phase. It readily can
be seen that this method of obtaining the p—2 contribution amounts to computing the leading
term in an expansion in powers of p~V2. Therefore, along with the p~2 contribution to (160) or
(164b), or to any p~2-retaining iteration thereof, there generally will be 552 contributions,

It follows (from the material presented thus far in this subsection) that it is very difficult to
find any set of scattering terms—or, equivalently, any set of scattering diagrams—which represent
the anomalous double scattering part of &™) without any truly three-body scattering contribu-
tions, and which therefore could be subtracted from &5 to yield the entire @), In this con-
nexion it is worth noting that @ of (162)—which, according to the penultimate paragraph
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above lies wholly in @{—can be thought to result from scattering processes involving no less
than three successive purely two-body collisions. It has been explained above that interchange
of order of integration and limit #—oo||9; in (162) is justified for essentially all 91 + 9,4; thus
we obtain as, for example, in (133)

ePVE _

lim @ (7) = — Cy(E) Ta (ky—> ky), (165a)

Froo[5 pt

To(ky > ky) = f AF TR [ (Vg V) BEO() + (Vo + Vi) B ) + (Vo + Vi) B )],
(165 b)

Now consider, for example, the first term on the right side of (165 4); in particular, consider the
contribution to ¥{*V,; $i6H made by the P{5)* part of P{*, where Pip* is given by (136).
from (014 P VBl = — P4 Vo O Vol B0+ B4, (1664
The first term on the right side of (166 2) can be re-expressed, as in (137), in the interpretable
SR N R

=- lintl) Pt (E+ie) Vs Gro( E+i€) Vip Gay (E+ i) Vyy 1
= —lim Py (E+16) Voy Gp(E+i€) T1o(E+i€) G E+i€) Ty (E+ie) ¥y
e—0

= —lin(l) YF TyGp TG Toy i, (166 b)
where T,; and G are evaluated at the complex energy E+ie. The integral (1664) obviously -
corresponds to a diagram wherein there are three successive purely two-body scatterings: first of
the pair 3, 1; next of the pair 1, 2; and finally of the pair 2, 3. Similar results hold for the other
terms on the right sides of (1655) and (166 a). Moreover, further iteration of ¥{™* in (1655),
or, for example, replacing ¥{* by @5;* in T{O*1,, B0, yields integrals corresponding to
even higher order scattering diagrams.

4.3.2. Volume dependence of triple scattering contributions

The integrals (165 5) are convergent, except possibly along special directions k¢ (for given k)
where some of the integrals in (1654) may be logarithmically divergent (see §B. 2). However,
there is no reason to think that the centre-of-mass frame probability current flow & of (127)—
when integrated over an infinitesimal range dk; in the vicinity of these special (here meaning
isolated) k¢ where T%(k;— k;) from (165b) is undefined—receives finite contributions from
these comparatively weak divergences (see § B. 2). Thus the possible existence of these special ks
seemingly does not require reinterpretations along the lines of §4.2, i.e. seemingly does not
introduce any anomalously 7-dependent contributions into the reaction coefficient w(i—f).
Moreover, there is no indication that the integrals (165 4) contain any other ks-dependent parts
which, after squaring, will be non-integrable over dk; (recall the form of (127¢)). Therefore, it
does seem to be true that the doubly-iterated @) (#) of (162), comprising contributions from
numbers n > 3 of successive two-body collisions, in essence behaves asymptotically like
GH(#;#; E) and entirely represents truly three-body scattering (as concluded in §4.3.1).
I remark that, as in the case of the special ¥ discussed in § 4.3.1, it has not been shown that the
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special k; of the present subsection actually exist; rather, because their effects apparently are
inconsequential for the purposes of this work, it is not worth the very considerable effort which
would be required to decide whether or not the logarithmic divergences of (165 4) ever can occur
at physically allowed real k;. Nor is there any evidence that the possible existence of real or
imaginary values of k; where (165 ) is logarithmically divergent should be associated with actual
singularities of 7¢(ky— ks), computed via analytic continuation (as a function of ks for fixed k)
from values of 7¢(ky —> ky) for which the integrals (165 b) surely are well behaved; it is conceivable,
for instance, that the logarithmic divergences of the integrals (1655) at special k¢ have no
physical significance, T but simply are manifestations of the fact that the interchange of order of
integration and limit #— oo||9; in (162) is not justified at special 9s. It does seem worthwhile to
stress, much as in the discussion following (48), that the integrals (165 ) are convergent except
possibly on an inconsequential subset of the allowed real k¢, whereas the integrals (133 4) always
are divergent, although it is true that the divergences in (1335) arise from d-functions (135)
which can be considered non-contributory except when their arguments vanish.

To further confirm our conclusion that @Y represents truly three-body scattering, I now
shall demonstrate, by arguments along the lines of §§ 4.2.1 and 4,2.2, that three or more successive
binary collisions cannot make contributions to the three-body reaction coefficient @ (i—f) which
increase as any positive power of 7. Consider, for example, the sequence of three two-body
scatterings: 1, 2 collide; 2, 3 collide; 3, 1 collide. Then, as in § 4.2.2, I first compute the reaction
rate for the above sequence under the circumstances that the volume 7 contains precisely one
particle of each species a.. After the collision between 2 and 3, whenever it may take place, the
laboratory frame speed and direction with which 3 moves through 7 are strictly correlated. It
follows that in order to rescatter from particle 1—whose trajectory has been fixed by the first
collision between 1 and 2—particle 3 must be scattered by 2 into a very narrow solid angle, of the
order 73, /L? where L ~ 713, Hence, referring to (159 a), the postulated sequence of three binary
collisions will have the rate

(12; 23; 31) <%%%%>av ~ 778, (167)
This result for @} corresponds to the incident wave y{ of (1564), so that the laboratory frame
w(i—f) is proportional to 73773 = 7%, implying this sequence of three binary collisions makes
a contribution to @ (i—f) which is proportional to 713, Therefore, recalling the discussion at the
end of §4.2.1, it is reasonable to infer that successions of z > 3 purely two-body scatterings, if
observable at all in a large volume 7, will be indistinguishable from (and apparently should be
included in) what I have termed truly three-body scattering. Note that the diagram corre-
sponding to (166 5) represents successive two-body scatterings in which energy is not necessarily
conserved in the intermediate states (e.g. between the first 3, 1 scattering and the second 1, 2
scattering); the physical purely two-body scatterings yielding the just estimated 7—*/3 contribution
to w(i—1f) are energy-conserving, and therefore are only a subset of the whole class of three
successive two-body scatterings represented by the diagram corresponding to (166 ) (see § 5.3.3).

T On the other hand, these logarithmic divergences may be related to the so-called pinch singularities (Eden,
Landshoff, Olive & Polkinghorne 1966) in the scattering amplitudes; however, I have not attempted to see if the
conditions for the logarithmic divergences coincide with the conditions for pinch singularities.

17 Vol. 270. A.
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5. THE PHYSICAL THREE-BODY TRANSITION AMPLITUDE

This, our final chapter, is concerned with an attempt to actually determine a useful expression
for the physical three-body transition amplitude 7%(k; — ks). As § 5.1 explains, attempting to
find 7%(k;— k1) using mathematically defensible procedures is impractical; to avoid extremely
difficult and complicated calculations, employment of some not obviously justified mathematical
short cuts seems necessary. One such plausible attempt to determine 7°(k;— k;) actually is
carried outin § 5.1. The formula for 7%(k; — ks) obtained in this fashion is shown to be consistent
with detailed balancing in § 5.2, while its interpretation is discussed in §5.3. Section 5.3 also
compares the configuration space expression for 7°t(k;— ki), as well as for the entire T (ky— k1),
with the corresponding expressions inferred via the more customary momentum space
procedures.

5.1. Derivation by subtraction of d-functions

Among the concerns of the preceding section has been the possibility of expressing @ in
the form BD(F) = B (F) + PED(F), (168)

where @1 is that part of @§*) which represents unwanted contributions such as anomalous
double scattering, but which is wholly devoid of any truly three-body scattering contributions.
In fact, §4.3.1 has examined, and found to be impractical though not obviously impossible, one
suggested means of constructing @), namely by seeking a set of scattering diagrams which
separate out the anomalous double-scattering terms from the truly three-body contributions to
@i, Alternatively, one could try to find a closed form analytic expression for @ (#) by carrying
through the calculation—of the asymptotic form of @{*)(#)—outlined in §E.3. A glance at
§ E. 3.1, however—especially (E40b) and the discussion immediately thereafter—makes it
evident that this suggested procedure for finding @™ also is not very practical, though again not
obviously impossible.

For many purposes—e.g. the construction of variational principles for three-body elastic
scattering—complete knowledge of the asymptotic behaviour of @) may be essential. On the
other hand, it is conceivable that only partial knowledge of the asymptotic behaviour of @§*+)—
in particular, only partial knowledge of the asymptotic behaviour of @+ in (168)—can
suffice to determine the physical three-body scattering amplitude 7°(k;—> ks). Thus it may be
possible to find T¢(k;— ks) without having to carry through either of the difficult calculations
discussed in the preceding paragraph. It seems clear, however, that any argument which leads
to Tt(ky— k:) while avoiding exact construction of ®¥)(#)—or of its leading 552 part at the
very least—will have to involve some mathematically questionable steps, i.e. will lead to a possibly
erroneous result for 7¢. Nevertheless, because determination of 7%(k;— k;) has been a major
objective of this work (recall our opening remarks in § 1), I now shall describe an attempt to
deduce T"(k;— ki) via a plausible argument which indeed does avoid finding first the leading
P52 part of GBI ().

We have seen that 7%(k; — k;) of (133 5) contains é-functions (135), ascribable to the fact that
the interchange of order of integration and limit # — oo in (132) was unjustified; this interchange
led to the erroneous assertion (133 4) whereas actually @§(7)(#) contains contributions behaving
like p~2 at large p. Suppose, therefore, I am able to express 7 of (133) in the form

Ts(ki—> kf) = Ta(ki——> kf) + Tt(ki—> kf), (169(1)

where T'* is wholly composed of convergent integrals (except possibly for inconsequential
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logarithmic divergences at special ki, recall §4.3.2), whereas 7% is a sum of terms proportional
to d-functions and thus has no finite part. Then from the entire body of this work, especially the
rules and discussion at the end of § 4.1.3, it seems reasonable to infer that 7%(k;— k;) in (169 a)
represents the contribution to 7°$(k;—> k;) from that part of @ (#) which behaves like p—2 at
large p, but which has no p—%2 components at large p. In other words, it seems reasonable to
conclude that T'¢(k;— k) is the contribution to 775(ky— k) made by &% (#) of (168), implying
Tt(ky— ky) of (169a) will be the desired entire truly three-body scattering amplitude associated
with @¥H(#). T stress that this conclusion, though reasonable enough, depends on a number of
unproved assumptions. For instance, I am assuming that any mathematically well-behaved 552
component of @§H(F)—that is to say, any component of &) (#) which is finite at # = 0 and
propagates to infinity without restriction in the six-dimensional #-space (recall the discussion at
the end of § 4.1.3)—indeed is everywhere outgoing, i.e. behaves everywhere at infinity like the
outgoing GyP(#;#'), not like the incoming free space Green function Gy (#;#). I also am
assuming that the unjustified interchange of order of integration and limit #— oo||9; in (132) is
not so wrong that (1694) becomes a quite misleading indication of the actual form of T*.
Without making these and similar assumptions, there is little basis for arguing that 7°t(k;— ki)
obtained from (1694) and (1334) can be identified with the ‘truly’ three-body transition
amplitudes of (3) and (4). Of course, explicit verification of these assumptions would involve
finding closed form analytic expressions for ¥ (#) and @) (#), an impractical task (as explained
at the beginning of this subsection) whose performance, if achieved, simultaneously would
obviate the need for computing the physical 7*(k;— k) via the present dubious argument.

Granting the legitimacy of using (1335) and (1694), T'*(k;— k) is found as follows. In the
terms on the right side of (1334) involving the product P{~*V},, use

P = Pid* — Vi (Vg + V) GiE, (1695)

which is the time-reversed analogue of (86), written in the notational style of (1005) or (105d),
i.e. with the Green function on the right, as here will be convenient; (169 4) also can be inferred
directly from the centre-of-mass analogue of the second equality in (65 ), via the methods of § 3.
Furthermore, in the P{*V,3 and P{*V,, terms of (1335), use respectively the 2, 3 and 3, 1
analogues of (1695). Then, employing (161) as well, one obtains

Ts(ki—> k) = fdi'{Wés‘f)*(f’) Vaa D1 () + O (#)] + Pl * (#) Veu [P (7') + DY (7)]
+ V™ (F) Vo[ B (7) + O (F) 1} + T4k~ kr) - (169¢)

in place of (133 5), where T(k;— ki) is given by (165 4). The same (169 ¢) is obtained from the
interchange of order of integration and lim r—oo|v; in the right sides of (161) and (162); of
course, this interchange—though justified in (162) (recall the discussion in § 4.3.1)—is unjustified
in the @54 terms of (161) (recall the discussion of (132) to (185)).

Returning now to the discussion of (135) to (137) in §4.1.3, one sees from comparison of
(169¢) and (1335) that all the double scattering d-functions of type (135) contributing to
Ts(ki— ky) are entirely contained in the integral on the right side of (169¢); in particular (a term
proportional to) the specific é-function (1354) arises entirely from the P§*V,, @} term in
(169¢). Let us consider this term, therefore. Using (72), (1055) and (136), one finds

P * Vog B3 = qu 23 Aoy €7 K020 4G 0¥ (1505 Rogs) Vog(795) K12 012 410 (1155 k1)), (1704)

17-2
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where 1,3, is defined as was «{7* in (1294), i.e

Usslf' (Tas; Rage) = €707 + Bad™ (g5 Rogy), (1706)
with @iz* given by the 2, 3 analogue of (105¢). Replacing the integration variable gy by 745,
the six-dimensional integral (170a) factorizes into a product of two independent three-
dimensional integrals, namely

fdrlz e~ ine-AG) (15,5 k12i)fd"23 u(zggfk("za; Rose) Vs (Tg5) € 718128 (170¢)

where 1n this section I henceforth shall employ the notation

m
A=K —1 K
23t T w12
(171 a)
B--"_K, +K
m2+m3 23¢ 12i»
. my
along with C=Kp+—F—Kyy,
mg =+ my
(171b)
D = m2+m3K231+K31i-

The integral over dry; in (170¢) is convergent, and in fact can be identified with a matrix
element of Z,5 (see § E. 4). The integral over dry, in (170¢) fails to converge, and in fact contains
a contribution proportional to the d-function (1354); the exact magnitude of this é-function
(135 4) contribution to (170¢), as well as of a second related d-function contribution, is computed
in §E. 4.

Specifically, § E. 4 shows that

ik 1712
it €12

fdr12 e—irlz.A ¢§;‘)<r123 121) - fdr { —iriz.A ¢ (r12) 12i) +35 ﬁz T1s <k121v12| t12i | k12i>

e—lArlz elATu.
X [6 (Viz—Vy4) Ary, —8(viet+vy) A—}}

ip
ﬁzj; ChyoyVal Bro | Ryo) f dr,, eirai—Arie

Z;zl; (- klziVAl Lyo | k121>f dry, ei(kw—hi)m (172 a)
where 1, = 71,V A = Av; while the truly two-body transition operators (third particle com-
pletely irrelevant and absent) #,4, and their matrix elements, are defined by (131¢) and (131f),
together with the shorthand notation

2k3s;

Loy = tp(Epy) = e 2y, ) ete. (172)
1%k3s

togr = tog(Eogp) = Ly Sty )’ etc. (172¢)

The notation (172¢), though not employed in (172 a), will be made use of below.

In (1724), integrals of the individual terms, e.g. of the term e—12-4 ¢{) (r ,; ky,;) originally
appearing in (170¢), do not converge. However, the d-function terms inside the braces in (172 a)
cancel the leading (~ r3%) terms in the asymptotic expansion of e~ 24 @) (1,5 kyy,); in other
words, provided it is treated as a single r,,-dependent function, the quantity within the braces in
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(172 a) is of order rg! ei®i2E4Dms at large ry,. Consequently the integral involving the braces in
(172 a) fails to converge only at the special values of k; satisfying A% = k3 for given kj, whereas
the left side of (172 a) (the first integral factor in (170¢)) diverges at all A, k5. The remaining
pair of one-dimensional integrals on the right side of (172 ¢)—multiplying the matrix elements
(k11 4| B1oy | Rasi) and {— Ky 4| t101| Ragy) Tespectively—are obviously divergent, i.e. strictly
speaking are mathematically undefined. To accomplish our present objective of finding an
expression for Tt(ki— kg) of (169a), it is necessary to somehow reinterpret these last two
divergent integrals on the right side of (172 4). There is no doubt but that the convergent first
integral on the right side of (172 a) contributes wholly to Tt(k;— ks). The problem is to decide
whether or not the last two integrals on the right side of (172a) also contribute to Tt(ky— ky);
referring to the discussion following (169 a), this problem amounts to deciding whether or not
the integrals in question plausibly can be interpreted as a sum of terms proportional to d-functions,
with no residual finite parts.

5.1.1. Formula for Tt(ky— ky)
It is argued in § E. 4 that the relations

fmdxei’*””=~1 (k + 0), (173 a)

. P

fw dxe® = ma(k) (k= 0), (173 )
0

provide a plausible interpretation, as a function of &, of the divergent integral on the left sides
of (173). Equations (173) are consistent with the more customary formula (Brenig & Haag 1963) 1

f " dxce = ma(k) +iP, (174a)
0

where P signifies the principal part when integrated over £, i.e. where it is asserted that for any
reasonably well-behaved function f (k)

f:, dkf () fo‘” dxel® = rf (0) +1i lim[ ) dkf;i(k)+ f :° d’“f;(k)]. (1745)

e—0 — 00

Use of Equations (173) in (172 4) specifies the magnitudes of the d-function contributions to
PG * Vs @3 of (1704), thereby making it obvious how to express this P{5*V,, @) part of
Ts(ki— ki) in the form (1694). Thus (see § E. 4) we conclude from (1694) and (169¢) that

Tt<k1-—> kf) = Td<k1—> kf) + T§312<k1'—> kf) + 7:5331(k1——> kf)
+ Thos(ki— ke) + T §110( ki~ ki)
+ Tlom (ki — ke) + T iops (k1 ki), (1754)

t It is possible that use of the methods of functional analysis would give some of the derivations which follow
a mathematically more acceptable (though probably not yet wholly rigorous) foundation. As a matter of fact,
Gel'fand & Shilov (1964) quote i/k rather than iP(k-1) for the imaginary part of the integral on the left side of
(174.a). I do not believe this difference—which probably is purely formal—would affect any of the results obtained
via use of (173) and (174); moreover, as §§ 5.2 and 5.3 point out, use of equations (173) and (174) as they stand
leads to formulas for T¢(k, - k;) which are consistent with detailed balance, with physical expectation, and with
momentum space procedures. Nevertheless, it must be admitted that I have not examined carefully the functional
analysis implications for the present work. I wish to thank Professor M. R. C. McDowell for making me aware of
Gel’fand & Shilov’s alternative to (174a).
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where for 42 + k%,;
T ia(ki—> ke) = (Rogy| tog | — B)fd’m {e*im'A BB (7195 Ryss)

i elkiairie e—idra eldri
+% 1o (kygiVag| B1ai | Rios) [ (Viz—v4) Arpy —3(vig+vy) Arlz]}

' K101V | tioi | Rias — k191 V4| 101 | Ryoi

It o 2 (Roat| faar| — [< 12(/;4]2.1_211[1)12 2.4 jqzzkil _I_Iiill) = >] ) (175)

while for C? + k2;
T bss1 (ki — kp) = (Ryyl t23le>fd’31 :eim'cﬁbgp(rm; 20

1 o C k31731 e~iCr31 eiOr31
+ ﬁ—?—r;—<k3liv31| taui | Regiy) [ (Va1 +v0) T 3 (v31—ve) Crar

ﬂ31 (k23f| tyst|D) [( — k311 Vol tau | Rsur) _ Cksuivel tan | k31i>] ) (175¢)

Clks —C) Clksy; +C)

In (175) we employ the notation (172¢), along with 1y = rg vy, C = Cv,; the two-particle
scattered waves ¢\ are given by (73), as always. The quantities T'%;55, Tlo5 of (175) are cyclic
permutations of 7s,; the quantities T'%y0, T ios are cyclic permutations of 7%, Evidently
T15(ki— k) is the contribution to T¢(k;— ki) made by Pi* Vo, @) in (169¢); Ty, is the
contribution to 7t made by P* Vo3 @5, In (175b), as in its generating expression (1724),
integrals of the individual terms within the braces (e.g. of the term e="2-4 ${3)) do not converge,
but the entire integral in (175 ) does converge provided the quantity within the braces is treated
as a single r,,-dependent function. Equation (173 @) means that the divergent integrals in (172 q)
have residual finite parts in addition to their é-function parts from (173 5); these residual parts
are the terms not under the integral sign in (175 ). Equation (175 5) does not specify

Tha(ki—>ke) at A= +kpy

(although of course only 4 = ky,; can occur for real k;, kr, where 4 > 0 by definition); in fact,
as was the case for the corresponding integral in (172a), at 4 = + ky,; the integral in (175) is
logarithmically divergent, i.e. strictly speaking is mathematically undefined. That these defici-
encies of (17550) at 4 = + kyy; are inconsequential for the purpose of this publication has been
explained in §4.3.2; in any event, the experimenter attempting to measure truly three-body
scattering would not be placing his counters at locations consistent with 4 = k,,;, because these
locations also are those at which the argument of the d-function (1354) vanishes (recall the
remarks at the end of §4.2.2). The rather awkward form of the right side of (1755) actually
reduces to a quite convenient and readily interpretable expression for Ty, (see § 5.2.3 below).
Similar remarks (to those of this paragraph) pertain to (175¢), which converges except when
C =+ kg
The derivation of (175) (§E. 4) simultaneously shows that in (169a)

T“(k,—> ki) = 2312<ki—> ke) + T2331<k1—> k)
+ T o5 (ki —> k) + T%1a(ki—> ky)
+ Tl (ki ki) + T gy (Fr > k), (176 a)
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where Tgalz(ki—> ky) = l;;glzﬂl(kzsﬂ t23fl B)( _klziVAI t1si ‘ k121>3(k121+A)

fa T

T 2k, (Roagy| tage | — BY Ckyarv 4| broi | Ryni) 8 (kyoy — 4), (176 )

_ i
Tg331(k1—>kf) = I;;gsli <k23fl tzsle> <k311"ol t311|k311>8 311+C)

;‘;,f” Cleggr| e | DY (= gy Vo by | Rgns) 8 (kg = ). (176¢)
The quantities 7 $ss, 7 fes1, in (176a) are cyclic permutations of T gy,; the quantities 7T %9,
T 4595 are cyclic permutations of 7 %, Evidently T g&,5(ki— ;) is the contribution to T%(ki—>ky)
made by Pi* V,y @F) in (169¢); Ti2s; is the contribution to 7% made by Pi5* V5, @%).

In (176 b), only the second é-function on the right can have a vanishing argument at real &y, k;.
Referring to (171 a), one sees explicitly that this second term on the right side of (176 ) is propor-
tional to precisely the d-function (135 q) interpreted in § 4.1.3. In particular, (137) to (139), and
the discussion thereof, showed the presence of the d-function (1354) could be interpreted as
resulting from two independent successive two-particle scatterings, namely first particles 1, 2
are scattered by each other, after which particle 2 is scattered by 3. The precise form of the
0(ky9 —A) term in (176 b) is consistent with this interpretation, in that this term is proportional
to the product of the truly two-body matrix elements (kyp;9 4| £10; |R1os) and (Ryg| toge| — B).
Indeed, at ky5; = 4, the final relative momentum £;y;v, in the two-body matrix element
(kyay V4| t1os | Ryas) associated with the first 1, 2 scattering is identical with A of (171 4), which in
turn is identical with the intermediate (after the first scattering) ki, of (138) and (139), because,
using (29) and (138) as well as K; = Ky and ky; = ky,

m m
A= K23Y+E—I—K12i = ky ey SR 1+ (km‘*}Ki)

1My M M
m ' ’ ! !
= k1f"‘m1+1m (Foyi + ko) = kj— T(k 1+ ko) = ki, (177 a)
2
Similarly,
_B=-_"™ K =— " (p _Mpg) (. ™
B = m2+m3K23f Ko m2+m3(k1f MKf) (k3l MKI)
m. ’ ’ ’ ’
= — gt (et ) = — e (b K = (1775)

Equation (177 4) shows that, in the §(k;, — A4) term of (176 ), the initial momentum — B in the
two-body matrix element Ry 2,5, | — B) associated with the second 2, 3 scattering is identical
with the intermediate kj3. Moreover, at k5 = 4 this second scattering matrix element
{kygt| tysr| — B), like the first scattering matrix element (kyy;v 4| £15; | Ryei), is on the two-body
energy shell (i.e. B = kyy) because

2 2m
4 = Ry (50 ) Kl o Ko Kot = B (1784)
. . . mg \? ., 0 2m,
implies B? = ——— K3+ Ky + s+ K231’ Ko
my ml—l-mz) 0 sz . mymg M
=3 + i ey ¢ 1785
my (mz +my) T (my+mg) (myHmy) T my (my 4+ mg)2 T ( )
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But conservation of the total energy of the three particles, along with K; = Kj, further implies
(via (35)) that k_gs_f_l_ﬁg _ @24_& 1750
thos  tar M1z HUsr
Use of (178¢) to eliminate k2,; in (178 4) immediately yields B? = £ (recalling (29¢) and (29f)).
Similar considerations to those of the preceding two paragraphs pertain to the cyclic permuta-
tions of (1764), as well as to (176¢) and its cyclic permutations. In particular, the precise form
of the 8(kyy; — C) term in (176¢) is consistent with the interpretation that this term results from
the purely two-particle scattering of 3 and 1, followed by a second purely two-particle scattering
of 3 by 2. More specifically, at ky;; = C it can be seen that: (i) the vector —kzy;v, = —C of
(171) is identical with the expected intermediate (after the first 3, 1 scattering) ky,; (ii) the
vector D now is identical with the expected intermediate kgy; (iil) now D = kyg, so that each
two-body matrix element multiplying & (£;,; — C) in (176¢) lies on the two-body energy shell.

5.2. Detailed balancing

From very general time reversal considerations (Goldberger & Watson 1964) one expects that
the matrix elements of the total three-body transition operator T (defined by (5)) satisfy

T(kl'—)kf) = T(——kr—)——ki). (1790)
Similarly, one expects that the truly three-body part T of T obeys
Tt(kl-—é' kf) = T_t(—-kf—% —kj). (1795)

For purely two-body collisions—where the integrals {* Vi and Y VPP of (126 4) and (131¢)
always converge, and where correspondingly the scattered parts &P, B{* of P, Wi* are
everywhere outgoing—the result (179 a) easily is demonstrated (Gerjuoy 19584) directly from
the formulas (126 b) and (131¢). In the three-body case of present interest this previous demon-
stration of (179 a) is not applicable, however, because now the integrals (126 5) and (131¢) need
not converge, and because correspondingly &{t and &{~* now are not everywhere outgoing. The
truly three-body amplitudes of (179b) are expressible in terms of convergent integrals (as the
last § 5.1 has shown), but these expressions are so complicated that the previous two-body proof
of the reciprocity relation (1794) also is inapplicable to (179 5). Thus it is needful to investigate
here whether or not the expressions (175) for 7¢(k;— ks) really are consistent with the reciprocity
relation (1795). This investigation is particularly necessary because the formulas (175) for
Tt(ky~> k) were derived on the basis of some mathematically questionable (though plausible)
manipulations, as discussed in § 5.1. One also could adopt the viewpoint that (1795) obviously
holds because, as will be discussed in § 5.3, the formulas (1654) and (175) for the various com-
ponent parts of 7¢(k;— ki) reduce to momentum space matrix elements, for which there
presumably are general proofs (Goldberger & Watson 1964) of time reversal invariance; this
viewpoint does not really simplify the problem of proving (179 4), however, since the proofs of
detailed balance in §§5.2.1 to 5.2.3 below largely involve carrying out this reduction of our
configuration space expressions for 7t (ky—> k1) to recognizable momentum space matrix elements.
Recalling (175a), to demonstrate (179 ) it is sufficient to show

Td(kl—% kf) = Td(——kf—> ki), (180&)
T bg1a(fes— ky) = T—fzza("kf’* — ky), (1805)



CONFIGURATION SPACE THEORY 269

because (180 4) obviously implies the cyclic relations

Thas(ky— ke) = Thas(— ke—>— k), (180¢)

T (ki— k) = Thyyo(— ki—>—ky), (1804d)

as well as Toos(ki—> k) = Tlgo(—ke—>—ky). (180¢)
Equation (180¢) is obtained from (1804) by replacing ki, ks with — Ry, — k; respectively.

5.2.1. Triple and higher scattering terms

First I shall prove (180a) holds, i.e. I shall prove detailed balancing for those terms in
Tt(k1—> k;) associated with n > 3 successive two-body scatterings (recall the discussion at the
end of subsection 4.3.1). Using (1655), one sees (1804) is equivalent to the assertion that

% (kes) [ (Vas + Var) P (Ra) + (Vo +Vig) DD (Rs) + (Vg + Vag) D1 (Rer)]
= PE*(— k) [(Vas + Vo) PSP (= Rea) + (Vg +V3) DI (= kee) + (Vig o+ Via) PR (— Rer) ], (181)
where the notation indicates that P{* on the left side of (181) is the limit as ¢ — 0 of the solution

to the centre-of-mass version of the Lippmann-Schwinger equation (107 a) with ¥y of (100¢),
whereas P{™* on the right side of (181) is the limit as € - 0 of the solution to the centre of mass

version of (107 a) using U = Palr, — ky) = o-ther, (1824)

Similarly @) (k;) in (181) is the quantity defined by (1614d) with the understanding that in
(161d) the functions @%p = P} are defined by (58 a) for ¢1 from (21 a), whereas @55 (— ky) is
defined by (1614d) and (58 a) using

Y= Yr(r, — ke = e, (1825)

Equations (182), together with (8) and (107 ), immediately imply
Pi*(~ k) = PiP(ky). (1834)

Similarly, (72), (73) and (105), along with (106) and (160), imply
DR (— kr) = D™ ki), (183 )
PP (— ke) = — GIP V[ PG (Rer) + D™ (Re) ] = D™ (kee). (183¢)

Thus the right sides of (1804) and (181) become

T —ke—>—ky) = [B* (Vo +Var) + Pi ™ (Vor +V2a) + DED* (Vo +Vao) 1 (P, (184.0)

where now, as always in the past, the subscript i on the right side of a matrix element is associated
with the incident wave vector kj, while the subscript f on the left side of a matrix element is
associated with the final wave vector k;.

Using the symmetry relation (95), valid for all the Green functions employed in this work,
(183¢) permits rewriting (184 4) in the form

T —ki—>—ky) = — [(D5* + PG ™) Vg G (Vag +Vay)
+ (DPG* + DG*) Vg G (Vg + V1)
+ (B + D™ Vay G (Vg + Vag) ] PP (1845)
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In (1845), ") can be replaced by lim 7 (E +1ie), from (34 a); correspondingly, recalling (60),
(72) and (105), ®{3)* can be replaced by

—lim {Gyy(E+ie) Vip i} = —lim ({13, Gip(E+ie)}. (184¢)
e—>0 >0

Moreover, as written the right side of (1845) is wholly composed of convergent integrals.
According to §§ 2.2 and A. 8, therefore, it is legitimate to replace (184 5) by

Tl —ky—>—k;) = hm Ui (Var Gy + Vag Gog) Vg Gro(Vag +Var) + (Vig Grg + Vi Giy)
X Vag Gog(Vay +Via) + (Vg Gog + Va5 Grs) Vay Gy (Vs + V)1 (1= GV) 1, (1854)

where all the Green functions are evaluated at the same complex energy A = E+ie. Similarly,
the left sides of (1804) and (181) are

T (ki ki) = lim Vi (L= VG) [ (Vs + V1) GraVia(Gaa Var + GasVas) + (Vg + Via)
+ V,

|4
X Gy Vos(Gra Via + Gt Vo) + (Vaa 4 Vas) Gar Ve (GogVas + GraVao) ] 1. (1850)
I stress that (185) hold even though the integral (52 ) need not converge, i.e. even though it is
not legitimate to replace Z{ by [1 — GV ] .

I now show that the matrix elements on the right sides of (1854) and (1855) are identical at
every A = E+ie (¢ > 0), which is sufficient to demonstrate (1804). Because all the Green func-
tions in (185) are exponentially decreasing at infinity for ¢ > 0, the orders of integrationin (185)
(and in subsequent expressions in this subsection) can be and will be rearranged essentially at
will. Moreover, to ease the notational complexity, for the moment I shall drop the bars in (185),
which here introduces no error even though the right sides of (184 4) and (184 ) are not con-
vergent in the laboratory system.

In (1855) use (63) to replace, for example, G(Vys+1V5;) Gy, by Gy, —G. Then (also dropping
temporarily the irrelevant lim as € - 0) the matrix element on the right side of (185 ) reduces to

Yi{(Vas + V1) Gr2Vaa(Gsy Vaa + GasVas)
+ (Va1 +Vi2) Gos Vas(GraVip + Gay V) + (Via + Vas) Gaa Vy (GasVas + Gra V1)
+ V(G - Gro) VoG Vay + GasVas) + (G — Gas) Vas(GraVi + Gy Vay)
+ (G = Gy1) Va1 (Gas Vos + G12 V1) 1} ¥t (186a)
= Y {VG[ (Vi +Vas) GarVar + (Vas + V) Gralia + (Vaa + Via) GasVas]

— V2 G1aVia(Gar Vit + GogVag) —Vag GagVag (G Via + Gy V)

—V31Gs1 Va1 (GosVas + G1aV1a) } s, (1860)
where in going from (1864) to (1865) I have rearranged the terms in G, and have noted that
Vag +Vsy = V—V,,, etc. Now in (186 4), use (63) again in the terms involving G, and recall (77 a)
as well as the manipulations in (137) and (166 ). Then (186 ) further reduces to

YV (Gar = G)Var + (Gro— G) Vig + (Gag — G) Vag] + (T1a — Vi) (Gia Vs + GosVas)
+ (Tos—Vag) (GraVia+ Gg1 V) + (Tsy —Vaq) (GasVas + GraVie) } ¥ (186¢)
= Y { = VGV +V3 Gy, Var + Vi G1aVip + Vas Gag Vas + T12(Gsy Vay + Gos Vas)
+ To5(GraVie + Gs1 Var) + T51(GasVes + Gro Vi) } Y1, (1864)
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which, recalling our starting-point for (184d) was (1855), implies finally
T ky—> kg) = l1_r)13 UHT - Ty~ Ty~ T3+ T, Gp Ty + T1,Gp Ty
+ TGy Tio+ Ty Gy Ty + Ty Gy Ty + T3, G T 1o} 1. (1874a)

A similar (to those employed in (186 @) and (187 a)) sequence of manipulations reduces the right
side of (185 a) to the right side of (187 a). Therefore, the equality (180 a) has been demonstrated.

It is worth remarking that the changes of sign on the right side of (187 ) are consistent with the
expectation that 7%(k;— k;), being the contribution to 7t(k;—> ky) associated with n > 3
successive two-body scatterings, must be identifiable with the matrix element of T minus all
single and double scattering contributions; these double scattering contributions, contained in
T's(ki— ky) of (1335), have been evaluated in (137). Actually, if convergence difficulties are
ignored, a much simpler sequence of iterations than was employed in deriving (1874) from
(165 ) yields (see § 5.3 below)

VT = P {Tra+ Tos+ Ty — Ty Gp T1o— T3 Gp Ty — T3, Gp T

— TGy T1a— T12Gp Ty — T15Gp Tog} Ui+ T ki—>ky)  (1870)
where now Gy, T,; are evaluated at real centre of mass energy Ei = Ep. The form of (1875)
evidently is consistent with (187 a), as asserted. However, because both the right and left sides
of (187b) are composed of divergent integrals (containing the trivial and non-trivial é-function
contributions which have been discussed in § 4.1), (1875) is not a useful formula for actually
computing 7%(k;—> ky). Instead, one must use (187a), or, if one wants to avoid taking the
limit € 0, the original formula (1655).

I further remark that (180 a) also can be demonstrated by showing that the right side of (184 )
is precisely the expression one would deduce for T%(k;—> ky) starting from the integral equation
(84¢). Specifically, in (84¢)

{CVL G} Vs PV = {GEP Vi G Vo[PS — G (Ma + Vi) W] (1884)

using (86). Thus one infers
P = Lim {Gr(2) Vi Gra(R) Vs P58 +Var P57] +ete }
—A{G Ve G} Vo G (Vo + Var) + Va1 G (Vo + V25)] PP +ete.,  (1885)
where, as always, A = £ +ie. But in (1885)
Hm {G o V15 GralVas Wi + V3, WP}
T - I {GuRaGalTi P+ T )
= —GiPVa[ P + D] = DD (1894)
Therefore, comparing with (161) and (162), @{?) is given by the terms involving ¥{*) in (1884).
Correspondingly, using the defining equation (165a) for T%(k;— k),
T (ki ke) = Y Vo GiP (Ve G (Vaa + Vi) + Via G (Vg + V2)] {7 et
= — PL* [Vas G (Vap + Vaa) + Vs G (Vs +22)] PP + et (1890)
The right side of (189 ) is seen to be identical with the (slightly rearranged) right side of (1845).
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5.2.2. Double scattering o-function terms

In this subsection I show that the amplitudes 7%(k;— k;) of (1764) also obey detailed
balancing, i.e. that
T“(ki—é- kf) = Ta(—kf*9'~ki). (190(1)

In particular, I shall prove 7'y, (ki—> ki) = T %os( — kt—>— k), (190 5)

which is sufficient to demonstrate (190 a) (recall the analogous case of (180)). It will be presumed
(in the remainder of this subsection) that for any given k; the final ks are chosen consistent with
energy and momentum conservation. These restrictions on ks are convenient, as will be seen;
k; can be so restricted because—for the purposes of this section 5.2—detailed balancing need not
be investigated for values of ki, ky which cannot occur in actual collisions.

Referring to (176 ), the left side of (1904) can be written in the form

_ — Uy TT1
T $so(Ri—ke) = ",%— (Rogy| tagt | — BY (A| 191 | Ry [0 (Rygy + A) + 8 (kygs — 4)]

— 20, TT1
= /hz <k23r| t23r| - B) <A| Lo | Ryg) 8 (kR — A7), (191a)

where we have used o[ f(x)] = o(x—x,) - (1910)

rf()

summed over all roots x, satisfying f(x,) = 0. Similarly, from (171) and (176¢),

- — 2l TT1 A A A
T'f223(ki”> kf) = —%L— <klzrl tlZf |D> < - Cl t23i l k231> 8(k§3i - 02)a (192 a)
where ¢= K12f+;2—’j_§7;l“Kzai,
B (192 )
A m
D = m, +1m2K121+K231-

When ky, k; are replaced by — ks, — k; respectively, (1925) implies that é, D are replaced
by — B, — A respectively, where A, B again are the vectors defined in (171a). Therefore

A 2/‘23 i

sz%( —ky—>— ki) = < k121| t121| A> <B| t23f| - k23f>3(k%3f“ Bz)- (193)

Now, as explained at the very beginning of this section, we know that the matrix elements of the
two-body operators £y, £y do obey detailed balancing, i.e. for any two vectors X, Y (whether
on the energy-momentum shell or not)

(X[ 111y = (-~ Y[ty | - X) (1940)

and similarly for #,,5,. Equation (194 a) can be proved, e.g. by noting that (108) and the definition
(131f) of t,, imply #;, is a symmetric operator in the coordinate representation,

t10(T105 125 ) = E1a(T1a5 1125 A), (1940)

whereat (194 a) follows immediately, recalling the fundamental defining relation (131¢) for the
matrix elements of #,,.
Comparing (1914a) with (193), and employing (194 a), we see that (1904) will hold if

Y190 (K3gi — A2) = pig3 8 (k3sy — B?), (195a)
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B4 My B
Mg Mz fas  Mos
But using (1784) and (1785), we see that (1955) reduces to the relation (178¢) required by

conservation of energy and momentum. Therefore (195 ) does hold, and the detailed balancing
relations (190) are satisfied, for ki, kr on the energy-momentum shell, Q.E.D.

1e. if

(195 b)

5.2.3. Residual terms

I now return to Tt(ki— ks) of (175a); in particular I now shall investigate the detailed
balancing properties of the residual terms T ig5(k1—> k1), etc., not examined in §5.2.1. If we
ignore convergence questions casting doubt on the legitimacy of interchange of order of integra-
tion and limit € 0, then, according to (137), the integral (1704a) is

P (k) Vag B (k) = —linn T (k) Top(E+ic) Gp(E-+ie) Tog(Bi6) Tl (196)
where 1(k1), ¥:(ks) are respectively the initial and final plane wave states ¥r1, ¥+ we have been
employing throughout, defined by (214) and (100¢). The time-reversed matrix element in
Ts(— ky—— ky) corresponding to (196 a) would be (referring to (169¢) and using the notation
of (181) and (182))

Padt*(— k) Vo O (— k) = —lim Y (— k) Typ(E+ie) Gp(E+ie) Tog(E+ie) Yri(— k), (1960)

e—0

via manipulations as in (137). But, as in (183),

V(= k) = Yu(ke), V(= ki) = §f (). (197)
Moreover, the fundamental definition (77 a) implies the three-body T'y,, like the purely two-body
t;,in (194 b), is a symmetric operator in the coordinate representation. Consequently, granting
the validity of (196), _ o _
Pia* (for) Vos DD (k1) = Pid* (— ka) Vip P (— ke). (198)
Section E. 4 in essence shows that

TGt* (ke) Vs @) (k1) = T hsia(Ri— ke) + T ggo(Ri— k), (1994)

where the quantities on the right side of (1994) are given by (1755) and (176 b). Similarly,
PG (— k) Vi ) (— k) = T%223( — k> — ki) + T os(— ke —>— k). (1990)

Comparison of (1994) and (1995), together with (1904) and (198), now implies the desired
reciprocity relation (180 4) which, along with the already proved (180 a), is sufficient to guarantee
(1795), as explained at the beginning of § 5.2.

The foregoing demonstration that 7't(k;— k) obeys (1794) is merely suggestive rather than
compelling, for the following two reasons. First, the interchange of order of integration and limit
€0 leading to the symmetric expression (196a) for P§G)*V,, &f really is not justified, for
reasons amply discussed in this and earlier sections. Secondly, even if the validity of (196) is
granted, it is not clear that the specific formulas (1755) and (175¢) are consistent with detailed
balancing, because these formulas were derived via some mathematically questionable manipu-
lations, e.g. the use of (173) to reinterpretf the divergent integrals in (172 4). What is required,
therefore, is a proof that (175 5) and (175¢), as they stand, satisfy (180 &). This proof I now proceed

to give. + Recall the footnote, p. 265.
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Recalling (192) to (194), it is seen that (175¢) yields

T1223( ky—>—ki) = <A| 121|k121>fd"23{ e B B (15— Raar)

1k 7
l//L23 231723
2 .
41ch? 7y

—iBrsy, elBras
[<k23f| t23f | - 23va> B - <k23f| t23f ‘k23va> B ]}

ﬂza (Ragt| tass | —Kagy VB> Roasy| tasy |kost V)
el e it L
In (2004) it has been convenient to rewrite (175¢) and its analogues in a fashion that trivially
eliminates the d-functions under the integral; as in (175¢), the integral in (2004) is convergent
provided the quantity within the braces is treated as a single ry5-dependent function. It is further
convenient to rewrite (200a) as

Tl — ko> — ki) = (A| tys |k121>{F23<k23f; B; ty,)

/‘;2223 I:(k23f| t23f| _k23va> _ <k23f| t23f ‘k23f"3>]} (2()() [;)

+ L ae
B(kyg — B) B(kyg+ B)
where

Fog(Rogy; B togy) = fdrz:s {e—im’B P (155 — Rogy)

i,LL93 elikesires B B )
+ 4_“_%2 Bra, [(Rogr| tat | — Kog Vi) €715 — (Rogy| Hogs | Koz v i) € 723]} . (200¢)

Rewriting (1755) in the same way, we obtain
T is1a(ki— kr) = (Rogy| to | — B>{F12(k1213 Astyy)

Mg [<k12i VA| 151 l ko) (=K VAI tisi | kmi)]}
4 £12 — 201 a
fi2 A(kyg—A4) A(kyp+4) ( )

where
Fio(Rys; As tya;) = fdrlz {e_im'A (1195 ko)
i1y, etunitse —idr idr
T imhe ar, [{Faoy vl bros | Ryag) €747 — (= yggv 4| 19y | Ryoy) €1472] 1. (2010)
With the aid of (131 f) and the two-particle analogue of (63 4), equation (73 b) takes the form

P (1195 Rygy) = _fdriz gg}v“(”mQ T1s5 E121)fdr’1,2t12(r12; 1195 Eygy) €xp {ikyy . 175} (202 a)

= —lim | drj, dis grap(T1a; T125 A) E12(T105 1125 A) €XP {iRyy; . 110} (2025)

e—0
= "lir? G125 (A) t15(A) Yr1gy (Rasy), (202¢)
where iy, is defined by (74 4), and
2L2
A= E,+ic = %Jrie. (2024)
219

Then from (201 ) we see

1ty €XP {1(2y9A/A2)E 7.
Fio(Rygy; A thy) fdrl2 hm{ erd g m(A) t15(A) Yrios(Ryar) + Iulzg p{ ( ﬂ122 ) 1}
4tk Ar?,

X [(R1g V| tron | Rigr) €714712 — (= kygy v 4| H1oy | Byos) eiAm]} . (203q)




CONFIGURATION SPACE THEORY 275

But, by our usual rule (§ A. 8), interchange of order of integration and limit ¢ — 0 is permissible
in (203 a), because the integral (201 ) is convergent (except at 4 = + £,,). Hence

. . 11, eXP {1(20A/A2)E 7
Fio(Rygi; A tygy) = hmfdrlz{—e—1'12~Ag12F(/\) t15(A) Yrioi(Ragy) + 4;&1];2 P fi( i;lzg ) 1)
€0 T 712

X [(RygiV.a| trgs | Ragi) €744 — (= kyg; v 4| #191 | Rygy) eiAm]}, (2035)

where now each of the terms inside the braces in (203 5) are individually convergent integrals.

. : 1 . ikyy. (rys— 1}
Using the expansion G1or(T125 Fia3 A) = f expikyy. (11 —11,) (204)

(2m)? (2R3 2p0) — A
the integrals (203 ) yield
(k A t ) — lm 2/‘L12{__ (fjlim('l) lk121> 1 <k121VA| t12i I k121> 1 < k121VA| t121 I k121>
Fialkum 4t B\ A% = (2 ) T 2ATA— (20 AT T2 AT+ 2y A2 ]
(205 q)

Hence, evaluating the limit €0 in (204 @), we obtain finally

. . _ 2uy <AVA|t121|k121> 1<k121VA|t121|k121> 1{—kyoy v 4| troi | Ryos)
Pk s ) =52 = g ) gl B (=P o o),

(205 b)

The result (205 5) is well-defined and finite at all values of A, ky,; such that 4 # + £,,;. In fact,
(205b) is finite even at 4 + k& p—where the integral (2015) (from which we deduced (2055))
diverges—provided it is understood that the values of Fy, at A = + ky,; are given by the limits
of (205b) as A + ky,;, namely

2t

Fio(Rygi5 k19iV 45 trar) EAl_i)rkIImFlz 2ﬁ2k2 (—kiz VA| tis I ki) (205 ¢).
Fio(Rygt; —kigivasti) = lim Fpy = %}:T <k121VAl t121|k121>- (205d)
A——FKkia1 121

Equations (205¢) and (2054d) are consistent with each other, in the sense that changing v to
—v,in (205¢) gives (2054d).
Combining (205 %) and (201) leads to

. 2ty (Rl | — BY (At o)

T§3lz<ki—>kf) — ﬁlz 231 23f1A2 klm 121| 12i (206)
valid at 4% % £2,;. Equation (206), which has been deduced from (1755), obviously is a generally
more convenient and more readily interpretable formula for 7¢(k;— ky) than is (175 5) itself.
Similarly, (200¢) leads to

2 Bvp|t,..| -k 1{Ryoe| tone | — Koarv 1 {Rogp| toar | kogp Vv
Fyy(koay; BV tayr) = ﬂza{_( 5| tast | a3y, 1€ aat| ozt | — Kose Vi) 1<k, 2_3f| 20t | Kozt 132}

oo B? — k33 2 B(B — ko) 2 B(B+kay)
(207)
which, when combined with (200), yields
7{223( . kf”—>— kl) - — 2/L23 <A| t121 lk121> <B| t23f| — k23f> (208)

z B>~ Ry,
valid at B? = k2.
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Using (1944) and (1955), we now see that (206) and (208) indeed are consistent with the
detailed balancing relation (1805), Q.E.D. I further note that according to (173%) the term
involving (ki —A)~* in (1755) should be dropped at 4 = ky,; correspondingly, the term in
(175 b) involving (kys; +A)~* should be dropped when 4 = — k,;. If these strictures are included
in (201 a), and then combined with (205¢) and (205 d), we see that (206) should be supplemented
by Tisa(ki—ke) = 0 (209 a)

at 4% = k%,;. Similarly (208) is supplemented by

Tios(—ke—>—k1) = 0 (2090)
at B? = k3, again consistent with detailed balancing. For completeness, I also note that (175¢)
reduces to Ty ) = — 22%31 (Rogg| toss lng;gfl taai | Ronr) (2104)
at C? # k%, supplemented by Tlegi(ki—>ks) =0 (2105)
at C? = k2.

I close this section with two remarks. First, because our conclusion that the detailed balancing
relation (180 b) is satisfied rests so heavily on the result (205 4), in appendix A. 10 I deduce (2055)
from (2015) by a method which avoids the (made to seem reasonable, but not really proved
in Appendix A. 8) interchange (203 4) and (2035) of order of integration and limit e 0; this
alternative derivation confirms the conclusions of the present subsection and provides further
evidence that our claims and arguments in Appendix A. 8 really are correct. Secondly, it readily
can be verified that (175 5) and (175¢) would not be consistent with (180 5) if the contributions
(173 a) to the singular integrals in (1724) had been omitted. |

5.3. Momentum space procedures

The iterations which have been employed in this work on numerous occasions—to obtain, for
example, (64) or (162)—=clearly are independent of representation, i.e. equally well could have
been performed in momentum space. Moreover, relations such as (63), (81) and the three-
particle analogue of (131 %) ultimately make it possible to express all iterations of the scattered
wave @{P—or of various contributions to @{" such as @5 of (161)—in terms of expressions
beginning with G§ (that is to say, expressions whose left-most factor isG%?) and whose right-most
factor is ¢4, In addition, as (96) argues and (90) make explicit, it is the case that the limit of
GP(r;r'; E) as r—> oo is proportional to ¢ (') defined by (100¢). Therefore, granting that the
variety of possible iterations must lead to self-consistent results provided questions concerning
convergence and interchanging orders of integration can be ignored, it really is not surprising
that the transition amplitude matrix elements obtained from our configuration space approach
agree formally with the corresponding matrix elements in the more customary momentum space
procedures.

Thus, for example, it is no surprise that (187) take the form they do. In the discussion of
(165) and (166) we have argued that 7%(k;—> ky) defined by (165 b) represents the contribution
to T (ki—> ky) resulting from scattering processes involving three or more successive purely two-
body collisions. Hence (187 5) merely states that (f| T |i) consists of 7°¢(k;—> ks) plus the con-
tributions (f| T,;|i) from individual purely two-body collisions, plus the contributions

1 Recall the footnote, p. 265.
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— (| T,;Gp T, |i) from all possible pairs of successive purely two-body collisions; that the minus
signs in (187 b) preceding the double scattering matrix elements are consistent with this interpre-
tation follows from (133 5) and (137). In the text I have given a long-winded derivation of (187 a)
(which except for its explicit inclusion of the limit ¢->0 is the same as (1875)) only because
I have insisted: (i) on starting from an expression (1655) for T%(k; - k;) composed solely of
convergent integrals, and (ii) on employing no mathematically illegitimate manipulations in
going from (165 5) to (187 4). If I am willing to employ mathematically questionable operations,
(187b) can be derived more readily than was (187 a). Specifically, start from (1314d), which with
the aid of (63) can be rewritten in the form (once again simplifying the notation by dropping
the bars)
# Ty =y (V=VGV) i
= YV = V]G = GV + V1) Gra] Vig = V[Gag — G(Vay +Vip) Gag] Vo
= V(G — G(Vig+Vas) Gaa] Var} ¥ (211a)
= lﬁ;fk{V_ I/].2 Gl2 I/].Z - (1/23 + I/{il) G12 I/12 + VG(V3 1) GIZ 12
—Vay GagVag = (Va1 + Via) Gag Vg + VG (Vor + Via) Gy Vig
- I/31 G3II/31 - (I/l2 + I/23) GSI I/31 + VG(I/12 + V23 G31 I/31} Iﬁl (21 1 b)
Next, employ (60) and (774), which reduce (2115) to '
Ty = lﬁ?(le‘*' Tos+ Tyy) ¥ —wik( —1+VG) (V23+V31) q)(lér)
—YF (= 1+ VG) (Ve +Vip) P =Y (= 1+ VG) (Vo +Ta5) B, (2110)
and then use (1006), which converts (211¢) to
;leﬁi = ’/’?‘( Tyo+ Toz+ Tyy) Yri+ lpg—)*[(V% +V) @ '+ (Va1 +112) ¢(+) + (Vip +Vas) qj(;f)]'
. (2114)
The ¥{* terms in (211d) are precisely 7°(ki— ky) of (1335); equations (137) and (169¢)
have shown
T5(ki— ky) = T7(ky— k) — w;‘{[T%GF T+ TyGp Ty
+ TGy Tos+ Ty Gp Typ+ TisGp Ty + T, Gp Tos] Y1 (211¢)

Equations (211d) and (211¢) yield (1875).

5.3.1. Diagrammatic techniques

The above derivation of (1875), as well as the derivation of (187 a) in § 5.2.1, can be paralleled
step by step in the momentum representation. Alternatively, one can obtain a quite direct and
simple demonstration of (1876) via diagrammatic techniques (Watson & Nuttall 1967;
Weinberg 1964). Although it really is not necessary to do so, we already have two independent
derivations of (187 4), for completeness sake I shall give this diagrammatic derivation. It is con-
venient first to introduce as propagators the negatives of the Green functions we have been
using; in this section these negatives will be denoted by the caret, i.e. G = =G, G, = —Gp,
810 = — £19, €tc. Then (131f) becomes

tiy = Vis+ V12815 Vo. (2124)
Correspondingly, the two-particle analogue of (81) is
b1 =8r+ 8 N2 bro (2125)

18 Vol. 270. A.
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Using (2125) to iterate (212a) yields
tio = Vie+ V8 Vie + Vi 8 Vie 8pVia + -, (212¢)

wherein all terms are of positive sign (the reason for introducing these careted propagators in
place of our former gz, g,). Taking matrix elements of (212¢),

Uartia¥im = YiaVie Vo + Ve Vio 8 Vi Vi + Ui Via 8o Via 8w Vi + - (2124)
Equation (2124d) can be represented diagrammatically by

1 | <] | <! 1 - |
£ i - e i o+ i+ f i (213)
2 2l w2 2 -2 2 -2

where the rules for constructing the matrix element counterpart to any individual diagram on
the right side of (213) are obvious; it only is necessary to remember that between any pair of
successive vertical lines connecting 1 and 2 the particles propagate freely, i.e. in each matrix
clement the free particle propagator g, separates successive interactions V;,. Placing the initial
state on the right and the final state on the left, as in the matrix elements (212 d) themselves,
minimizes possible confusion in interpreting the diagrams; in other words, we suppose the system
evolves from right to left as indicated by the arrows. The bubble diagram on the left denotes the
sum of the diagrams on the right; equivalently, the bubble diagram denotes the matrix element
of t,,(1,; 11,) itself.
Similarly, in the three-particle system (again dropping the bars), where
T =V+VGV, (214 a)
using G =G,+G,VG, (2140)
obviously leads to
T = Vit Vot Vor +Ves CrVia +Vaa GuVia + o + V1o GVip GV + ..
+ V31 GpVig G Vig GV GV GpVig Gploy GV + o (2140)
That is to say, every possible sequence (with repeats) of the three interactions V,, Vyy, V3, occurs
in the iteration of T. Correspondingly we have the diagrammatic representation

1 1 ] -] |————] |——g—]
2 2 =2—<—*2+2—<———-——<—2+2——€——<—2
3 3 3 —<t—3 J-—e—'—=w] J-t——=]3
] —t——] |- < | | < ~-€ ]
+ 2~ -2 42 <t——¢2 +.f 2-et—el—C—) +
3 I3 =3
] = ~ e ¢
+ 2 - D B S -+ (215)
3= < -

A



CONFIGURATION SPACE THEORY 279

where the super-bubble in (215) denotes (f| T'|i), and where on the right side of (215) there
occurs every possible diagram constructed from successive vertical lines V3,, V53 or V3, connecting
pairs of the horizontal lines 1, 2, 3. Actually (215) has been drawn so that the individual diagrams
therein are the counterparts of the particular terms included in (214¢).

Now consider the first diagram on the right side of (215), representing the matrix element
(f| V33 |i). Evidently this diagram is the first in a whole sequence of diagrams on the right side
of (215), each of which is composed solely of interactions V},. In other words, on the right side of
(215) I can single out the sum of diagrams

| - I

(216a)

3 —~ J————

where the bubble on the right side of (2164) now denotes the matrix element ¥ Ty,1;. This
bubble must be identified with the matrix element of the three-particle Ty, of (77 a)—rather
than with the two-particle #;, of (131f) and the bubble in (213)—because in (214 a) Vy,(r; 1)
is proportional to the three-particle d(r —r") of (27¢), rather than merely to the two-particle
8(ry,— 1},) of (131f); correspondingly, the matrix element counterparts of the diagrams in (216 a)
involve the three-particle free space propagator Gy = — Gy we have used throughout, and are
taken between the three-particle plane wave states ¥y, ¥ of (100¢), (21 a) respectively.

Next consider, for example, the fourth diagram on the right side of (215). Then on the right
side of (215) I first can single out the sum of diagrams

| —— 1
2 - + T (216 4)
J—% 3 —

followed by the sum of sums

| ‘@ |
2 + + +oeo= 2 (216¢)
3 < 3

The diagram on the right side of (216 ¢) obviously denotes a i T, G Ty, contribution to the
overall sum on the right side of (216 ). Similarly, starting with the last diagram (I will call it D)

on the right side of (215), I first sum those diagrams which repeat the right-most interaction V,,

obtaining a sum represented by a diagram identical with D, except that T, replaces 3, on the

right. Next I sum the sums in which T', has replaced V;, on the right side of D, but in which the
18-2
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interaction V53 immediately to the left of T}, is repeated. Evidently, proceeding in this fashion,
I'single out in (215) a collection of diagrams associated with D whose sum represents the matrix
element A A A A A ~ A
w;k T31 GF T12 GF T12 GF T23 GF T31 GF T12 GF T23 GF T12 'ﬁi-
It is now apparent that (215) yields

Ut T = Yif{Tio+ Tog+ Ty + Ty GF T+ Ty éF T3+ Ty GF Ty
+ Ty CA'YF Ty, + Ty, GF Ty + Ty GF Tyosppri+ T ki —ky), (217a)

where T4 can be thought to consist of all matrix elements corresponding to n > 3 successive
two-body scatterings, i.e.

T ki~ ke) = Yri{Tyy GF T, GF Ty + Ty CA'YF T, GF Topy+...
+ T GpT1yGp Toy Gy Tog+ ..} 1. (2170)

Replacing G in (217) by — Gy, and recalling (1655) and (1665), we see that (217 a), signs and
all, is identical with (the laboratory frame version of) (1875).

5.3.2. Single and double scattering diagrams

Thus far this section 5.3 has made it clear that our configuration space expressions for
(f| T|iy = T (ki-> ki) agree formally with expressions for (f| T |i) derived via momentum space
procedures, and that they should be expected to manifest such agreement. On the other hand,
this assertion, important though it is, does not of itself imply that reaction rates computed using
our configuration space expressions necessarily will agree with the results of reaction rate compu-
tations using momentum space expressions. In the first place, the whole possibility of demon-
strating a correspondence between configuration space and momentum space formulations
depends on being able to interchange order of integration and limit #—co in various integral
expressions for @) or parts of @{), as discussed in chapter 4; without this interchange, the
configuration space results for probability current flow cannot be expressed in terms of matrix
elements (such as yf V&P, &*V,, B3P, etc.) ultimately identifiable with momentum space
matrix elements composing all or part of {f]| T'|i). Moreover, the aforementioned formal agree-
ment between the configuration space and momentum space expressions for (f| T |i) has been
established without regard to the possible influences of manipulations such as: (i) interchange of
orders of integration, (ii) interchange of order of integration and limit ¢ 0 in (f| T(E+ie) |i),
and (iii) Fourier transformation, i.e. transformation from the coordinate to momentum repre-
sentations. Such manipulations, if not legitimate, can produce differences in the numerical values
of matrix elements which are formally identical, and strict proofs of legitimacy are hard to come
by; in fact, it already has been pointed out, in connexion with (51¢), (561d) and (1314), that the

relations YEVPD = gF T(E) Y = limyf T(E+ie) ¥ (218)
e—>0

need not hold. However, as so often argued in this work, it is reasonable to assume that manipula-
tions which at no step involve divergences indeed are justified.

Let me now assess the significance of (187 5) in the light of the above remarks. The discussion
of (165a) has explained that the interchange of order of integration and limit #— co yielding
(1650) is justified, except possibly along an inconsequential set of special ¥;. Correspondingly,
T?(k;— ky) is composed of convergent integrals, except possibly along an inconsequential set of
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special kg; moreover, because the integrals in (1655) are convergent, manipulations such as
those in (166 b) are legitimate. It follows that the quantity 7%(ky—> ki), here defined as the contri-
bution to Tt(ky—> ki) or T (ki ks) associated with n > 3 successive two-body scatterings,
should yield the same values whether computed in momentum space or in configuration space
(except possibly along an inconsequential set of special kr). As it happens it is the carefully proved
(187a), rather than (1875), which provides the mathematical statement of the immediately
preceding assertion concerning 7 ¢(k;—> ki), because in momentum space the scattering matrix
elements comprised in (f| T(E) |i) customarily are computed from the limit ¢ 0 of the corre-
sponding matrix elements in (f] T(E+ie) |i). To put it differently, in the momentum space
formalism the contributions to the total scattering amplitude 7 (k;— ;) made by, for example
the diagrams on the right sides of (216 @), (216¢) are respectively

Tyo(ker— ky) = lim (f] To(E +ie) [i), (2194)
e—0
Tys1z(ky—> ky) = lim — (f] Tos(E+i6) Gp(E+ie) Tip(E+ie) |i), (2190)

where it is understood of course that for physically observable amplitudes E = FE; = E;. The
relations (219) define the momentum space scattering amplitudes whether or not it is true that
the corresponding relations

HH; (| Tio(E+ie) i) = (f] Tio(E) |1 (2204)
and lirr;~ | Tyg(E +i€) Gp(E+ie) Tyy(E +ie) |i)
- = — 1] Ton(B) G(EB) Too(E) | (2200)

(involving interchange of order of integration and limit ¢ 0) hold when these matrix elements
are computed in the momentum representation.

In view of the foregoing, differences between configuration space and momentum space
reaction rate predictions can stem only from the behaviour of matrix elements representing
single or double scattering, i.e. from matrix elements of the types written down in (219) and (220);
in the remainder of this section, therefore, we confine our attention to single and double scattering
contributions to the scattering amplitude. For either of these types of scattering processes it was
less obvious initially than in the case of n > 3 scattering processes that there would be a close
agreement between configuration space and momentum space results, because for integral
expressions representing those parts of @1 associated with n = 1 and n = 2 scattering processes
interchange of order of integration and limit r o0 is not justified (recall chapter 4); corre-
spondingly, when for these n = 1 and n = 2 processes this unjustified interchange of order of
integration and limit r—> oo was performed, the configuration space matrix elements obtained
were divergent, implying that the (seemingly required for agreement between configuration
space and momentum space predictions) manipulations (i) to (iii) listed in the opening paragraph
of this subsection would have dubious validity. Nevertheless (as is detailed below) the momentum
space and configuration space results for single and double scattering processes gratifyingly turn
out to be actually identical, not merely formally identical.

Consider first the typical single scattering process represented by the diagram (216 a), whose
contribution to the scattering amplitude is computed in momentum space via (2194). I shall
show that the formula (219 @) leads to precisely the same result for 7,(k;— k) as was obtained
in §4.1.2, wherein Ty,(ki—> ks) was inferred for purely real energies (¢ = 0) via admittedly

18-3



282 E. GERJUOY

mathematically incorrect relations such as (126 ) or (1315). In effect, therefore, I am going to
demonstrate that (2204) really does hold. By definition (recalling also (335), (404) and (77 a))

(] Top(Er+ie) iy = fdi' d# exp{ —i(kygy. 110+ Kyor- 1)} Tro(F5 75 By +i€)
X exp{i(Ryg. 11+ K. q1)}
= [[ardrE(rs ) Diatra) 80— i) (s — i)

—Via(110) Gro(F; 7' Ei+1€) Vig(r1) 1 Y1 (75 Ra).
(221a)

Jd712 dqy,dri, dqysexp { —i(Ryar. 115+ Kiop- €12)} Via(110) 0 (115 — 115) 8(q1a— Qo)
X exp {i(Ryg - 1o+ Ky q12)}
= (21)3 8 (K19 — K1) fdrlz dripexp{—ikyy. 115} Vip(115) O(r1p— 115)
x exp {iky; . 115} (221 )

Also, using the appropriate analogue of (534) (see § D. 1), the integral involving Gy, in (221 a)
becomes

1 ’ ’ . . ’ ’
Wfd'm dqy,dridqipexp{—i(Rygr. 115+ Kigp. @ua) yexp {i( Ry 115+ Ky q15)}

4 2 - ’ ’ = th\Z .
X Via(112) Via(7 1) dem exp {iKy5. (€12 — q12) &1z ("123 r1o5 Ly — ) 24 le)

M3r
f2k2, .
—(2m)3 0 (Ko — Kyg) fdrlz drigexp{—ikygy. 115} Vio(115) 815 ("12, 1125 2ﬂ121 + 16)
X Via(112) €xp {ikyy;. 115} (221¢)
Thus (f] T,y (Ey +ie) iy = (21)3 8 (K g — Kygy) {f| t15(Erg; +ie€) |1}, (2224)

so that, recalling the remarks following (131¢), the definition (2194) implies the momentum
space contribution to 7 (k;-> ky) made by the diagram (2164) is
Tia(ki—> k) = (21)28(Kp — K1) (f] t12(Ey) |1, (2220)

where the matrix element on the right side of (2224) is defined as in (131¢). Obviously (222 b)
is identical with (130¢), recognizing that the left side of (1304) is the configuration space expres-
sion for Ti,(ki—> k).

Next consider the typical double scattering process represented by the diagram (216¢).
Computed in momentum space the matrix element on the right side of (219 ) is, by definition

1 ’ ’ T I : al I : ’ A I .
(~21~T—)§fdk12dK12dkl2 dKo(ke| Toy(Er+i€) | kY (k| Gp(Ei +ie) | R ) R'| Tyo( Ey+ie) | ki),

(2234a)
where the matrix elements of T, 5 are given by (221) and (222), and where, again by definition,
(k| Gy(E;+ie) |k'y = fdidi'%;"(i; k) Gy(i; 75 Es +ie) Y (¥ k). (223 )
Using the expansion
G (i 7 Etie) = — L
Grp(#;7; Ei +ie) = B i

dﬁlz dfem exp {iA[’em (1 — 1‘12/)\ +Ki,. (qm_— qiz)]} '
(72k3e/2015) + (F2K35/2135) — Ei—1ie

(224 q)
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Equation (223 5) becomes
1

k| Gp(Ey +i "N = (2m)8 — k] K,,—K; =
< |GF(E1+1€) |k> ( 1T) 8(k12 k12) 8( 12 12) (ﬁzk%g/zﬂ/lg)+(ﬁ2K%2/2ﬂ3R)_El_i6

. (224b)
Inserting (2245) and (222 a) into (223 a) yields
{f] Toa(Ei +i€) G (Fi +ie) Tip(Ei+ie) i) = fdklz dK 5 0 (Kas — Koys) 0 (K — Kiay)

<k23fl tos([A%h31/2p005] +1i€) | kys) <k12l t10i ([#2K301/20015] +i€) |k121>
L(k) Ei—ie

(225)

which can be seen to be equivalent to the result quoted on p. 59 of Watson & Nuttall (1967).
In (225), E(k) is given by either the 1, 2 or the 2, 3 analogues of (35), as one chooses. Hence,
because of the § (K, — K;,,) factor in the integrand, the denominator in (225) can be written as

RSy 1Kl

E(R) —Ei—ie =-—22__"121_ ¢ 226 a

(k) = £~ 2119 2 ( )

also, from (294) Ryy = — (K12+ n—;”fm K23) , (226 5)
2 3

kyy = K23+m1+m2K12. (226)

Equation (226¢) further implies that (for fixed K,) dk;; = dKyg, i.e. in (225)
dk, dK, = dK,; dK;,. (226 4d)

Using (226 d), the integrations in (225) are immediately performed, with the quantities k,g, k;,
being given by (226 ), (226 ¢) respectively after making the replacements Ky = Koz, K5 = Kjy;.
Recalling (171 4), we now see that (2194) and (225) imply the momentum space amplitude

<k23f| to3(Eyg +i€) | - B) <A| t12(E121+16 Ik121>

ki—>Fky) = — P 227
Trnal = ) = = 3 2110) — (%R 20— =2
For A% = k3,,, the limit in (227) can be performed immediately, and obviously yields
——2312(ki . kf) — 2/"12 <k23fl t23i‘l B> <A| t121 I k121> (228 a)
#? A2 — 3y

For A2 = k3,,, the limit e— 0 in (227) does not really exist, but in momentum space procedures it
is customary (Brenig & Haag 1963) to make the interpretation

lim = 16 (w) +P— (2285)
e—0 W — ie
where P again signifies the principal part (after integration). According to (2285), at A% = k2,,,
(227) should yield
— 2 i
7—;312(k1 g kf) = /1/12 <k23f| t23f| - B> <A| t12i |k12l> 8(A2 k%%) . (228 C)

The rightsides of (228 ) and (206) areidentical; the rightsides of (228 ¢) and (191 @) are identical.
Therefore, recalling also (2094), we see that (2284) and (228¢) taken together show the
momentum space value for Tyq,,(ki— k) is identical with the configuration space value for

7;2312(131—) kf) = Tg3lz(ki_> kf) -+ Tg312(k1—> kf) (229)
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for all 42, where the configuration space amplitudes on the right side of (229) are defined by and
computed from (1755) and (1765). In effect, I have shown that (220%) holds for all A%—£2%,,
when the right side of (220 5) is identified with the configuration space amplitude defined by the
divergentintegral (170 a), provided (173) is used to interpret the non-convergent parts of (170 ),
and provided (2285) is used to interpret the limit e 0 in (227).

5.8.8. Off-shell double scattering

Section 4.2 makes it obvious that, whether arrived at via momentum space procedures or via
the configuration space approach of § 4.1, the single scattering transition amplitude of (222 a) or
(180¢) must not be included in T'*(k;— ky). In other words, for the purpose of deciding whether
or not single scattering contributes to the true three-body part of the total transition operator T,
configuration space and momentum space procedures are equally useful. For double scattering
processes, on the other hand, the situation is somewhat different. The preceding paragraph has
shown that the momentum space and configuration space double scattering contributions to the
total T are the same; however, the momentum space considerations, e.g. the diagrammatic
derivation of (216¢) in §5.3.1, do not very convincingly indicate what part of Tj4,,(ki— ki)
should be included in 7(k;— k;). Again, § 4.2 makes it obvious that, whether arrived at via
momentum space procedures or via the configuration space approach of § 4.1, the quantity (228¢)
giving Tyao(ki— ki) at A% = k2,,, must be excluded from 77%(k;—> ki); otherwise the inferred
three-body elastic scattering rate will have an anomalous 7¥ dependence on the volume 7. But to
decide whether (228 a), the value of Ty,(ki — ky) at A2 = k2,,, should or should not be excluded
from T't(ky— ki), it seems necessary to fall back on our configuration space arguments, which
(via the definition of @™ in the opening paragraphs of chapter 4) provide a formal basis for this
decision, although admittedly the physical interpretation of the off-shell double scattering
contributions to T* given in the latter portion of the present subsection is so convincing that
having such a formal decision basis appears almost irrelevant.

Actually, once (1755) has been reduced to (206), the conclusion that it indeed represents
a contribution to T*—i.e. the conclusion that (228 a) should not be excluded from T*—apparently
can be inferred merely from the rules at the end of § 4.1.3. Along most directions v; in the nine-
dimensional configuration space, the scattered part @{(r) decreases asymptotically like p—5/2;
these are the directions corresponding to those k¢ for which the experimentalist expects to count
truly three-body scattering events. Correspondingly, in general the allowed k; for given k; form
a five-dimensional manifold (conservation of total momentum and total energy imposes four
conditions on the otherwise arbitrary nine numbers specifying ky;, Ry, ks). Now for specified
ki, ki, the quantities A, B are uniquely determined by (171 @), without imposition of any addi-
tional conditions; therefore, for physically allowed k: consistent with given kj, the double
scattering processes whose contributions are evaluated by (2284) are associated with the full
five-dimensional manifold of final k;. Consequently, in general (228 a) represents a contribution
to Tys10(ki— ky) along directions k; corresponding to truly three-particle scattering, i.e. in
general (228 4) should be included in T*. Because of (177), the result (228 ) can be interpreted
as resulting from a pair of successive purely two-body scatterings, each of which conserves
momentum but not energy (though of course conservation of total energy in the overall transition
from k;—> ks is guaranteed, because k;is presumed to lie on the total energy shell). The extra
condition that energy shall be conserved in the individual two-body scattering events can be
satisfied only on a four-dimensional manifold of final directions k;, along which § E. 3 shows
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&{M)(r) decreases asymptotically as p~2 (consistent with the fact that a §(A42—£2%,,) factor turns
up in (228¢)); consequently the double scattering contributions (228 ) along directions A% = £3%,;
should be excluded from T*.

The factor (42— £3,,)~" in the right side of (206) means that @ (k;— k;) of (3) will diverge
when integrated over all final k; consistent with A% =& £2,;. This result, for the elastic scattering
processes here being discussed, can be interpreted along the lines of § 4.2.2. Although the diagram
(216¢) corresponds to a pair of purely two-body scatterings, nevertheless this diagram’s off-shell
contributions (206) or (2284) cannot occur unless all three particles somehow simultaneously
interact; if particle 3 is infinitely far from the pair 1, 2, then the pair 1, 2 can only make a collision
which conserves energy as well as momentum. To put it differently, after the first collision in
(216¢) the particles 1, 2 are in a state which lasts only a time Af until particle 2 collides with 3.
The magnitude of At is given by X

At ~5 (2304)
Vg
where X is the distance travelled by particle 2 between its collisions with 1 and with 3, and
v, = fiky/m, is the velocity of particle 2 after its first collision. But the magnitude AE of the
departure from energy conservation in the intermediate state is

AE = 2 (grofay ~ 230
- 2,“12 121 At’ ( )

A fivg
yielding X~ N (230¢)

Now, as in § 4.2.2, suppose the volume 7 contains precisely one particle of each species, 1 2, 3.
The rate of double scatterings in which a collision between 1, 2 is followed by a collision between
2, 3 during the time for particle 2 to travel a distance X is (compare (1594))

(),

Therefore the rate of double scatterings in which the scattering between 2, 3 takes place after
particle 2 has travelled a distance between X and X+ dX is

~<3"£ 12-3> dx. (2314)
T T/
But, from (230¢), dX ~ (—Aﬁ%—)@d(AE) (231¢)

so that, still with one particle of each species in 7, the rate of double scatterings in which energy
conservation in the intermediate state fails by an amount between AE and AE +d(AE) is (using
(1520))

N W3 Ty, \ d(AE
War(1,2;2,3) = % ‘;23ﬁ1)2> _(LAT); (282q)
av
~ rb:lZF%d(AE)
=0 —5" AE)? (23215)

where C” here is independent of the shape of the scattering region 7, and represents an average
(over scattering directions and velocities) of the various primarily velocity-dependent factors in
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(232 4) not explicitly included in (2325). The corresponding rate with N, particles of each
species in 7 is

Dpp(12;23) = N, N, Ny 0, 5(12,23) = N, N2]\737€(Zlg;23

d(AE). (232)

Except for the factor C’, the result (232¢) has precisely the form obtained when the contribution
|T%510(ky— k) |2 from (206) is substituted into equations (2) and (3), remembering that @, is
proportional to |{f| #,5; |i)|2, and that d ky;, dkyg, dky;in (3) can be re-expressed in terms of d(AE)
and other k-dependent differentials. The fact that (232 ¢) is proportional to 7 once again indicates
that the expression (206) must be included in the physical three-body scattering amplitude; the
fact that (232¢) is non-integrable at AE— 0, corresponding to collisions at distances X— o0 in
(230¢), accounts for the divergence of (3) when integrated over final k.

I believe the above qualitative largely geometrical argument is basically consistent with the
arguments of Iagolnitzer (1965),T who has examined the interpretability of a propagator pole
in the scattering amplitude. Hefinds that the polecan be understood to represent a pair of succes-
sive real two-body collisions, but his analysis holds only in the limit that the distance X between
the collisions is very large. It is to be noted that the geometrical argument in this subsection differs
in one important aspect from those given in § 4; in § 4 it always was presumed that each individual
collision under discussion (e.g. the individual two-body processes considered in the derivation
of (1594)) was an actually occurring event, i.e. was consistent with energy and momentum
conservation. Finally, I close this, the last section of the main text, with the remark that despite
the consistency and interpretability of our result (206) for the contribution to T* made by double
scattering processes, it still would be desirable to confirm our conclusions via a configuration
space calculation of 783, (ki — k¢) which somehow avoids having to reinterpret singular integrals,
as we were unable to avoid doing in deriving (175).
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